Approaches to Achieve Benefits of Modularity in Defense Acquisition (WRT-1002)

Sponsor: ODASD(SE)

Presented on behalf of team by:
Dr. Cesare Guariniello
11th Annual SERC Sponsor Research Review
November 19, 2019
FHI 360 CONFERENCE CENTER
1825 Connecticut Avenue NW, 8th Floor
Washington, DC 20009

www.sercuarc.org
“The” Problem: challenges in a multi-domain battle scenario

• Complexity
 — Multiple, diverse systems
 — Size of problem
 — Interactions
 — Dynamic environment

• Modularity Trade space
 — Mission level, SOS level, system level
 — Competing metrics: cost, performance, flexibility, reusability

• Uncertainty
 — Performance/cost
 — Future missions
 — “Stable intermediate forms”

In this context, DOD acquisition challenges are significant:
 • Affordably address emerging threats
 • Component obsolescence
 • Planned technology upgrade for tightly coupled, highly integrated systems and dynamic missions
Potential, Partial Solution: Benefits of Modular Open Systems Approach (MOSA)

- MOSA encourages adoption of modularization and open architectures
 - DoD is prioritizing speed of delivery, continuous adaptation, frequent modular upgrades (Secretary of Defense Mattis’ testimony before congress, 26 April 2018)
 - Increased flexibility
 - Cost reduction, not only by used COTS components, but also by adoption of standards
 - Incremental commitment and intermediate capabilities

- Imperatives we have uncovered so far:
 - Modularity not as an “output” but as a means to achieve benefits
 - “Doing MOSA” is “Doing Good Architecting”…but organizational readiness to adopt and mirroring to the modular architecture of the product is critical
 - MOSA approach supports Mission Engineering and is facilitated by Robust Portfolios, Set-Based Design, etc.
Motivation for Research

- MOSA is “in the law” and might be good, but many programs don’t know how to actualize the benefits:
 - Current MOSA guidelines provide limited insight into
 - the “what”: specific potential benefits of modularity and openness
 - the “how”: which levers to play and decision problems to solve to realize the benefits of modularity and openness
 - the “why”: how can programs improve their evidence for specific MOSA implementations

- Challenge: strategies and tools to be successful in MOSA ecosystem

- Our goals in MOSA research with SERC over last 2.5 years
 - Identify and suggest guidelines for MOSA implementation: how to encourage and achieve modularity and openness
 - Provide quantification of the achieved benefits in terms of cost, performance, risk, ability to change when requirements change
 - Support both technical and managerial aspects: what organizational structure to better implement MOSA principles?
Previous Learning & Findings (1)

- **2017 Workshop** with government, military, academia, and industry suggested needs and requirements
- **Interviews** to Program Managers to learn about their perspective

- Some key findings:
 - MOSA is a means to achieve benefits
 - Early stage acquisition process key to modularity and openness
 - Early support mechanisms in place
 - Need to address both managerial and technical needs
 - Organization needs to be ready to deal with the solution
 - Tools to assess consequences of modularization choices
 - Feedback mechanisms to help stakeholders understand consequence of actions
An interactive tool to provide further guidance to program managers: prototype Decision Support Framework

Chose to pursue cascading matrices to create a visual analysis of how the inputs translate to the outputs throughout the program lifecycle.

Established a potential path forward for data collection and case studies.

Translate knowledge from AoA, JCIDS, OSA contract guidebook, and case studies into cascading dependencies, PM guidance document and prototype software.
• What’s in Ver 2.0?

Case study summaries related to early stage lifecycle implications on MOSA and lessons learned:

– **Early stage acquisitions** systems engineering, pursuit of reachable core requirements upfront

– Due diligence across each segment of the acquisition lifecycle is important for traceability

– …need to consider their (modular and open solution) impact on the organization that’s employing it – **Is the organization using this solution ready to deal with it?**

– Having appropriate systems engineering **artifacts** (e.g. MBSE) at early stages can improve the pursuit of MOSA benefits

– It is never too early to **think about how** contracting can support MOSA objective
Previous Learning & Findings (4): DSF software 1.0

- Prototype decision support software
 - Simple cascade traceability needs → requirements → alternatives → required resources including organizational requirements
 - Oriented to early phase and AoA
WRT-1002: objectives and workflow

• Objectives
 — Building upon previous efforts, refine MOSA Decision Support Framework
 — Translate knowledge from specific programs into functional features of DSF
 — Explore practically informed tradeoffs between and among metrics of interest to partner programs (e.g. cost, schedule, risks) against various strategies for openness and modularization
 — Validate and verify the effectiveness of prototype DSF

• Organization of work (two-pronged approach)
 — Analysis of historical reporting data and/or case studies
 — Analysis of representative synthetic problem; explore the use of set-based design in a mission engineering environment
Expanding research in WRT-1002: DSF 2.0

- Qualitative
 - Aimed at adherence to MOSA principles and organizational structure
 - Based on cascading matrices to relate program requirements to management and production requirements

- Quantitative
 - SoSE-based
 - Focused on trade-offs (cost, schedule, flexibility)
 - RPO for generation of alternatives
 - SDDA for analysis of schedule
 - SODA for analysis of performance

Inputs and user queries

QFD Cascade Matrices and SoS tools

Outputs (some in MBSE format)

Context
- Acquisition
- Environment
- Details of mission (‘ilities’)

Organization al Disposition
- Who is integrator?
- Support Team? WGs?

Resources Available
- Cost
- Data, Interfaces, Interactions
- Stakeholders

System Operational Dependency Analysis (SODA)
System Developmental Dependency Analysis (SDDA)

Robust Portfolio Optimization (RPO)

Cost, Schedule, Risk Implications

Adherence to MOSA principles

Product - Organizational Structure Relationships
Analysis of historical reporting data and/or case studies

• MOSWG
 – Experience on required assets towards MOSA ecosystem
 – How to evaluate “amount” of adherence to MOSA principles and benefits of MOSA

• VICTORY program
 – VICTORY provides a standard electronic systems architecture for ground vehicles
 – Defines standard modules and interfaces, then each program takes pieces of this standards as suited for their program

• Leveraging MBSE, MCE
 – Learning from SERC RT-187
 – Our work on MBSE and reusability in DSF

• Open Architecture Assessment Tool
 – How well suited is an organization to adopt MOSA
 – Key drivers
Recent Learnings from the MOSWG

Participants in MOSWG range from first-time users to experienced practitioners who are pushing the boundaries. Some of the key points include:

- **Guidelines by NDIA**
 - Develop MOSA strategy early
 - Define MOSA evaluation and implementation approach, including incentives
 - Digital Engineering in support of MOSA
 - Create library of MOSA certified systems and interfaces

- **MOSA to avoid “skipping a generation” due to obsolescence**

- **Navy using modular COTS architecture with common information standards and common source library**

- **Use of MBSE and automated testing**

- **Identification of possible evolution of MOSA** (Naval Information Warfare Center)
Recent Learnings from the VICTORY interaction

- The VICTORY architecture is a set of open standards for networking and communication
 - Meant to be adaptable as needed by different vehicle system development programs
 - Some of the standards allow variable fields, to be specified by the project, subcontractors and departmental teams with additional data elements hidden from external interfaces
 - While this enhances the application domain and flexibility, it introduces additional challenges. Less agile than commercial concepts, based on standards like CAN or SCADA
- JLTV used some elements of VICTORY, but employed modular open architecture not only in electronics but in all major subsystems
- Practical steps to advance appropriate use of MOSA
 - Acquiring families of vehicles with multiple variants
 - Including requirement language about mission modules
 - Favor subsystem functions which are not tightly coupled
- Methods, procedures and tools are evolving. More from the bottom up (tools and capabilities lead evolution of procedures and methods)
MBSE environment for the MOSA DSF

• Learning from SERC RT-187:
 ― Multi-information graphics
 ― MBSE for visualization of output
• Architectures with different type and level of modularity can be analyzed in detail with different representations
• This aspect of the project has been submitted as paper for CSER 2020
Recent Learnings from Open Architecture Assessment Tool

- OAAT v3.0: Excel-based tool that aids the user in applying the Open Architecture Assessment Model

- A 0%-100% score is produced to describe the level of openness with respect to programmatic and technical factors

- Manager & SME input can help quickly estimate the acquisition and technical characteristics of each system for a rough order of magnitude (ROM) scoring

OAAT provides rationale and factors for consideration to support a decision making process from a program management and business case perspective

Deep Dive into OAAT conducted by project collaborator
Dr. Charles Domercant
WRT-1002 – Synthetic problem for development and V&V of DSF 2.0

- Based on Mission Engineering and addressed using Set-Based Design
- RPO used to identify alternative sets / architectures, then SDDA for analysis of schedule, and flexibility tool
- Useful to study different future missions (flexibility), as well as modular vs. non-modular sets / architectures

Example of problem setup for RPO. Mission scenarios require SoS capabilities, provided by systems that also have I/O support requirements and associated costs. This approach also populate the DSF matrices

<table>
<thead>
<tr>
<th>No.</th>
<th>System Type</th>
<th>System Name</th>
<th>Power</th>
<th>Resupply</th>
<th>Support Input</th>
<th>Support Output</th>
<th>System Capabilities (Outputs)</th>
<th>SoS Capabilities (Outputs)</th>
<th>Cost [S]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground Systems</td>
<td>Infantry Platoon</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>SC1 = Attack Air-Air</td>
<td>(30, 5)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Ground Systems</td>
<td>Combat Engineers</td>
<td></td>
<td></td>
<td>0</td>
<td>10</td>
<td>SC2 = Attack Air-Ground</td>
<td>[M1, M2]</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Ground Systems</td>
<td>Airborne Infantry</td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>SC1 = Mobility Sea</td>
<td>[10, 20]</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Air Systems</td>
<td>Jeep Willys</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>[M1, M2]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Air Systems</td>
<td>"Deuce and a half" (supply truck)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>[M1, M2]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Air Systems</td>
<td>P-51 Mustang</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>SC1 = Mobility Air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Air Systems</td>
<td>Boeing B-17</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>SC1 = Mobility Air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Air Systems</td>
<td>C-17</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>SC1 = Mobility Air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Naval Systems</td>
<td>Alien M. Sumner Destroyer</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>SC1 = Mobility Air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Naval Systems</td>
<td>Battleship</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>SC1 = Mobility Air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Space Systems</td>
<td>Earth Observation Satellite</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>SC1 = Mobility Air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Space Systems</td>
<td>Communication Relay Satellite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SSRR 2019

November 19, 2019
Synthetic problem for development and V&V of DSF 2.0 (2)

Outputs:
- Alternative feasible architectures (system portfolios)
- Cost, performance
- Matrix of architectures to be used to feed quantitative and qualitative analysis in DSF → not only Pareto fronts, because architectures used in other tools

Modular systems

For initial assessment (or future technologies), set-based design is ideal

<table>
<thead>
<tr>
<th>System Type</th>
<th>System Name</th>
<th>Transport Range (m), Transport Capacity (lb)</th>
<th>Fuel Capacity (lb)</th>
<th>[Rating (n.d.)]</th>
<th>Number of Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Systems</td>
<td>P-51 Mustang</td>
<td>[0, 2000]</td>
<td>2795</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B-17 Flying Fortress</td>
<td>[0, 6000]</td>
<td>13800</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>C-47</td>
<td>5509</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B-29 Stratofortress</td>
<td>[0, 6000]</td>
<td>52000</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B-2 Spirit</td>
<td>20000</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ground Systems</td>
<td>Infantry Platoon</td>
<td>[10, 1845]</td>
<td>0</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>M1A1 105mm Howitzer</td>
<td>[0, 12480]</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>M-4 Sherman</td>
<td>[150, 2251]</td>
<td>899</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>M60 Greyhound</td>
<td>[125, 234]</td>
<td>535</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Jeep Willys</td>
<td>[0, 95]</td>
<td>95</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>"Deuce and a half" (supply truck)</td>
<td>[0, 378]</td>
<td>378</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Advanced Targeting Pod</td>
<td>[0, 378]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TARDIC Chavez</td>
<td>[100, 378]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TARDIC Anti Air Module</td>
<td>[100, 378]</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TARDIC Artillery Module</td>
<td>[100, 375]</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TARDIC Personal Module</td>
<td>[100, 375]</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>B-29 40 mm gun (L.60)</td>
<td>[100, 400]</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Naval Systems</td>
<td>Refuel Depot</td>
<td>[0, 0]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Beef stock Depot</td>
<td>[0, 0]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Allen M. Sumner Destroyer</td>
<td>[0, 0]</td>
<td>336</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Higgins Boat (LVP)</td>
<td>[0, 0]</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Landing Ship, Tank (LST)</td>
<td>[0, 0]</td>
<td>140</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Battleship</td>
<td>[0, 0]</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Database of required/provided support

Database of systems capabilities
• RPO uses database to generate Pareto fronts of architectures against competing metrics
• Each dot on the Pareto front is a portfolio of systems
• RPO-generated architectures provide only part of the quantitative results: the corresponding network of interdependent systems are used as input to other SoS tools
Outputs of the DSF 2.0 (2)

- Plots can be queried for information:
 - SoS capabilities
 - Performance and cost
 - Systems providing capability
 - Systems providing support
 - **Presence of modularity**
Upcoming Milestones

• Working version of DSF software (Dec 2019)
 – Production of architectures with RPO based on database for synthetic problem
 – Partnered testing of DSF software and PM document, e.g., users can run the tool, interpret outcomes, and provide feedback
 – Provide quantification of some of the achieved benefits (cost, performance) and how those change with architecture with different levels of modularity / openness
 – Benefit immediate customers

• Integration of DSF software with SoS tools (Feb 2020)
 – Use of architectures in cascading matrices together with case study-based database to identify organizational requirements
 – Use of SoS tools for quantitative analysis of risk and schedule
 – Case studies related to mission engineering and defense acquisition
Thank you

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract HQ0034-13-D-0004-0063. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology.

Contact: Dr. Daniel DeLaurentis
Chief Scientist of the SERC
Director, Center for Integrated Systems in Aerospace (CISA)
ddelaure@purdue.edu