

Cyber Security Requirements Methodology: Tools & Transition

Sponsor: OUSD(R&E) | CCDC AC [WRT-1013]

By

Peter Beling and Tim Sherburne Barry Horowitz, Cody Fleming, Stephen Adams, Giorgos Bakirtzis 11th Annual SERC Sponsor Research Review November 19, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009

www.sercuarc.org

Cyber Attacks on CPS

Stuxnet 2010

Drone Capture 2011

Remote Vehicle Hacks 2015

Chemical Plant 2017

Lab Demonstrations

Sponsor: DoD (OSD, Army, Air Force)

Adversarial Attacks on Al

No Hacking Needed!

Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning models." arXiv preprint arXiv:1707.08945 (2017).

Engineering Cyber Resilience

Cybersecurity?-No!

- Physical points of entry
- Off-the-shelf electronics
- Insider threat

Deterrence:

- Reverse asymmetry; erode attacker confidence
- Minimize changes to the system while maximizing uncertainty for the attacker
 Resilience:
- Ensure acceptable mission outcome
- Condition on certainty of attack.
- "Point defense rather than perimeter defense."

GAUSS Surveillance UAV

Approach:

- 1. Identify nightmare scenario
 - GPS compromise
- 2. Behavior-based detection mechanism
 - Voting between two GPS units
- 3. Switch operating mode
 - Mission termination

Resilience-focused System Architectures and Reusable SW Design Patterns

- Resilience the capacity of a system to maintain state awareness (implies a monitoring process) and to
 proactively maintain a safe level of operational normalcy in response to anomalies (implies a process of
 system reconfiguration, based upon diverse redundancy), including threats of a malicious and unexpected
 nature.
- The required anticipatory processes for monitoring and reconfiguration is conducted by a subsystem referred to as a <u>Sentinel</u>, which should be far more secure than the system being addressed for resiliency
- While the cyber attack detection process is expected to be automated, the level of reconfiguration automation may vary across system functions:
 - <u>Totally Automated</u> (Sentinel determines what to do and informs appropriately trained system operators regarding automated execution)
 - <u>Semi-automated</u> (System operators receive automated recommendation(s) from Sentinel and, accounting for both battle context and a broader set of information available to them, decide on what to do)
 - Manual (Operators, or higher levels in the command hierarchy, determine what to do)
- In addition, resilience includes:
 - Containing the immediate consequences of the detected attack
 - Post-attack forensic support based upon the data collected for addressing anomalies.

Black Text: Rieger, etal, 2009 IEEE Human System Interactions Conference Red Text: Related to Cyber Attack Resiliency: B.M Horowitz, UVA

- **Diverse Redundancy** for post-attack restoration
- Diverse Redundancy + Verifiable Voting for trans-attack attack deflection
- **Physical and Virtual Configuration Hopping** for moving target defense
- Data Consistency Checking for data integrity and operator display protection
- **Parameter Assurance** for parameter controlled SW functions
- <u>Application-Layer Introspection</u> for matching machine work loads to observed system behavior
- **<u>Real-time Resilience Testing</u>** for increased operator confidence

UVA Cyber Resilience Group

Ship Control (Northrop Grumman)

3D Printers (NIST)

Human Factors Experiments (RT-201, Air Force)

Networked Munitions (RT-191/196, Army)

Cars (VA State Police)

Industrial Control Systems (Mission Secure Inc)

Risk-Based Cyber Security Requirements Methodology

- What to protect and why? Which combination of design patterns to employ in which mission subsystems?
- Who to involve? What information to provide for decision support?
 - -Blue Team: the system/mission owners
 - Provide structured elicitation process from safety community
 - Receive priorities for system functions
 - -Yellow Team: the systems engineers
 - Provide scoping from Blue Team
 - o Receive systems models (e.g. SysML)
 - -Red Team: the in-house adversaries
 - Provide systems models and ML tools to cross reference with known attacks
 - Receive vulnerability assessment

5625001

N54575D0.2

- UVA is currently working with OSD, the Army and the Air Force to develop methodologies and technology to support cyber security design and evaluation
 - —System architectures and reusable SW design patterns for achieving resilience (OSD; RT-142; RT-156, RT-172)
 - —Risk analysis tools for selection of design patterns for specific systems to apply (OSD; RT-156, RT-172, RT-191, RT-196)
 - —Use of SW static analysis tools in concert with dynamic analysis testing (Army; ART-006)
 - -Experiments that address operational processes for achieving resilience and preparation of operators to carry out their roles (Air Force; RT-201)
 - -Resilience requirements methodology (Army; ART-004)

- Dr. Carl Elks VCU
- CYBOK is a multi-view search engine on how to "relate" cyber threat information in a systems model context. It views the diverse set of cyber repositories (CAPEC, CWE, CVE, CPE, etc.) as greater than the sum of their individual parts.
- Uncovering the synergistic relations in these diverse set of repositories and casting the information into "system" model perspective is the innovative aspect of CYBOK.

Mission Aware MBSE Meta-Model

Mission Aware (MA) Meta-Model Overview

SysML v2 is proposed standardization target for the formalization of associations between Systems Theoretic Process Analysis (STPA), Model-Based System Engineering (MBSE), and Mission Aware (MA) concepts.

٠

STPA is an iterative, methodical hazard analysis technique to identify causes of hazardous conditions intended to improve or promote system safety.

In cyber-physical systems, security can be treated as analogous to safety.

MBSE Meta-Model Overview

ENGINEERING

Key requirement defined by Object Management Group (OMG) for SysML v2 is "*a meta-model of core SE concepts with precise semantics*." Vitech Corporation MBSE meta-model largely aligns with SysML v2 goals.

Mission Aware Overview

- A <u>Resilient Mode</u> is a distinct and separate method of operation of a component, device, or system based upon diverse redundancy. Resilience allows the system to maintain a safe level of operational normalcy in response to anomalies, including threats of malicious and unexpected nature.
- A <u>Sentinel</u> is responsible for monitoring and reconfiguration of a system using available Resilient Modes. The Sentinel subsystem is expected to be far more secure than the system being addressed for resiliency.

CSRM / MA Meta-Model Mapping

ENGINEERING

CSRM Step #1 – System Description

CSRM Step #2: Operational Risk Assessment

CSRM Step #3: Prioritized Resilient Solutions

CSRM Step #4: Cyber Vulnerabilities & Recast Resilient Priorities

ENGINEERING

Mission Aware: MBSE Attributes and Metrics

Object	Attribute	Values	Notes
Loss	missionImpact	High / Med / Low	Blue Team
Loss Scenario	attackLikelihood	High / Med / Low	Red Team
	attackType	External Insider SupplyChain	
	attackPattern	<capec-#>:<title></title></capec-#>	
	detectionPattern	DataConsistency ChangingControlInput Introspection	
	detectionTime	seconds	Time budget to detect loss
	isolateTime	seconds	Time budget to isolate loss via system /component tests.
Resilient Mode	complexity	High / Med / Low	Number of model "contained by" associations. Indication of cost.
	effectiveness	High / Med / Low	Impact on remediating High "likelihood" attacks associated with High "mission impact".
	operationalImpact	High / Med / Low	Degree of operator training need. Degree of mission interruption.
	restoreTime	seconds	Time budget to restore system function via resilient mode.
	operatorDecisionTime	seconds	Time budget for operator decision time to enable resilient mode. 0 implies automated resilient mode.

<u>Recovery Ratio</u>: A mechanism to evaluate & refine a System Architecture against defined Resiliency requirements:

• An iterative process as system design is refined / matured

Metric	Units	System Model Evaluation / Simulation
Resilient Mode: "Recovery Ratio" per System Function [per Loss Scenario] <i>Calculated:</i> Measured / Expected	< 1: Acceptable > 1: Not Acceptable	 Recovery time includes: Detection Isolation Restoration Including: Technical: System Components Operational: System-of-System Interactions Operator: Expected Decision Times
Loss Scenario: Time to Detect	seconds / minutes	 Impact tradeoff for Sentinel interfaces: polling-based (system / link loading) event-based, etc.
Loss Scenario: Time to Isolate	seconds / minutes	Impact tradeoff for System / Component Test capabilities
Resilient Mode: Time to Restore	seconds / minutes	 Impact tradeoff for Resilient Modes: Active/Active Active/Standby (Hot / Warm / Cold) Includes Operator decision time

Example: Behavior Model Simulation

Example: Behavior Model

ENGINEERING

The Enhanced Functional Flow Block Diagram (EFFBD), like its SysML cousin the activity diagram, is a complete representation of behavior. EFFBDs unambiguously represent the *flow of control* through sequencing of functions as well an overlay of *data* and *resource* interactions.

Example: Simulation Transcript

ENGINEERING

Summary / Additional Research Efforts

- Investigation of GraphQL Schema as mechanism to publish MA Meta-Model
 - Seamless integration of CYBOK scoring capability
- Refine / validate MA Meta-Model via "Model-Based System Assurance" (ART-004) project
- Additional case studies
 - Silverfish
 - UAVs