Verification & Validation (V&V) / Test & Evaluation (T&E) Competencies

Sponsor: OUSD(R&E) | CCDC

By
Drs. Laura Freeman, Alejandro Salado, Homero Murzi
11th Annual SERC Sponsor Research Review
November 19, 2019
FHI 360 CONFERENCE CENTER
1825 Connecticut Avenue NW, 8th Floor
Washington, DC 20009

www.sercuarc.org
Research Need

- The discipline of systems engineering currently lacks a competency framework for verifying and validating complex systems through a test and evaluation process.

- The complexity of our systems from software enabled technologies is increasing exponentially, the methods we use to V&V and T&E these systems need a methodological framework to keep up.
Goals and Objectives

• **Goals:**
 • Develop a model of the key competencies required for the DoD acquisition workforce to support V&V and T&E.
 • Create a paradigm shift focusing on transforming engineering education and professional training in the areas of V&V and T&E.

• **Objectives:**
 • Develop an initial structure of a V&V and T&E competency framework
 • Establish the research methodology to create and validate the framework
 • Identify critical information sources
Illustration of the Problem

Significant Problems Observed in Operational Testing
DOT&E Reports 2015 - 2017

Tests Without Problems: 35.6%
Tests that Only Observed Known Problems: 27.9%
Tests that Discovered New Problems and Observed Known Problems: 21.6%
Tests that Discovered New Problems: 14.9%

36.5% of Operational Tests found new problems
"Shift Left" Targets

Percentage of DOT&E Reports
Why a Competency Model is Needed

Airborne + Support Software

Airborne Software

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LOC in thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-16A Block 1</td>
<td>135</td>
</tr>
<tr>
<td>F-16D Block 60</td>
<td>236</td>
</tr>
<tr>
<td>P-3C</td>
<td>1,000</td>
</tr>
<tr>
<td>F-22 Raptor</td>
<td>1,700</td>
</tr>
<tr>
<td>F-35 Lightning II (2006)</td>
<td>6,800</td>
</tr>
<tr>
<td>F-35 Lightning II Block 2B (2016 AF IOC)</td>
<td>8,000</td>
</tr>
<tr>
<td>F-35 Lightning II Block 3F est. (2017)</td>
<td>9,200</td>
</tr>
</tbody>
</table>

Establishing a Competency Model

• Statistical Frameworks
 — Design of Experiments (DOE) and Sequential test design
 — Scientific Test and Analysis Methods (STAT)
 — Human Testing / Experiments

• Software Verification and Validation
 — Software Engineering
 — Axiomatic Approaches
 — Formal Methods
 — Design for Testability

• Systems Engineering
 — Unit testing – potential environments in which the agents need to be demonstrated
 — Evidence generation during design - Testing needs to be carried out throughout the systems engineering and design process
 — System modeling and simulation-based testing. Need to develop standards for modeling
 — Compositional analysis

• Cyber-Physical Systems (CPS) approaches
 — Verification: model checking, theorem proving, simulation, symbolic execution
 — Validation: experimental validation, emulation

• Emerging ML/AI Techniques
 — Cognitive instrumentation and Explainable AI
 — Adversarial testing
 — Negative testing
 — Evaluating Symmetries in ML
Expected Outcomes

• **Near Term:**
 • Develop competency framework
 • Develop a validation plan
 • Identify key academic disciplines

• **Long Term:**
 • Establish an academic degree program in T&E and V&V