Efficient Multidisciplinary System Design Optimization at the Mission Level

Sponsor: OUSD(R&E) | CCDC

By
Mr. Brian Chell

7th Annual SERC Doctoral Students Forum
November 18, 2019
FHI 360 CONFERENCE CENTER
1825 Connecticut Avenue NW, 8th Floor
Washington, DC 20009

www.sercuarc.org
Presentation Overview

• Introduction

• Current projects
 — Multidisciplinary design optimization (MDO) architectures
 — Multifidelity optimization (MFO)
 — Mission-level optimization (MLO)

• Future research
MDO Introduction

- Geometry
- Aerodynamics
- System Model
- Structural Analysis
- Performance
Research Introduction

• Optimizing complex system models is computationally expensive

• Efficiency can be improved with the right MDO architecture and/or MFO method

• Optimizing for mission success, rather than system performance, may better align with stakeholder needs
MDO problems can be formulated in different ways; this work compares two common architectures.

Multidisciplinary Feasible (MDF)

Optimizer → CFD → FEA

\[
\begin{align*}
\text{min}_x & \quad f \\
\text{s.t.} & \quad g \leq 0
\end{align*}
\]

Individual Discipline Feasible (IDF)

Optimizer → CFD → FEA → FEA

\[
\begin{align*}
\text{min}_x & \quad f \\
\text{s.t.} & \quad g \leq 0 \\
& \quad y - \hat{y} = 0
\end{align*}
\]
MDO Architectures Results

- Architectures optimized 15 times using surrogate-based algorithm
- MDF finds better optima but takes more time – confirming predictions found in the literature
- MDF has a more straightforward set up
- IDF can take advantage of parallel processing and may be more suitable for siloed work structures
- IDF coupling constraints can hinder algorithm convergence

<table>
<thead>
<tr>
<th></th>
<th>Optimum (mi)</th>
<th>Time Elapsed (hr)</th>
<th>Run Time (min/run)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDF</td>
<td>Avg. 9514.6</td>
<td>13.32</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>St. Dev 442.3</td>
<td>8.63</td>
<td>0.14</td>
</tr>
<tr>
<td>IDF</td>
<td>Avg. 9122.2</td>
<td>8.80</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>St. Dev 427.8</td>
<td>2.97</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Multifidelity Optimization

Low-fidelity Model
Faster run time, less accurate results

High-fidelity Model
Slower run time, results accurate enough for application

MFO:
Accurate enough results, significant time savings
Models used in MFO Study

• Simplified models
• Projection-based models
• Surrogate models
• Experimental data

This project uses a coarsened mesh and a surrogate model for the two lower-fidelity models.
Multifidelity Optimization Results

- Multifidelity model management strategy did not save time
- Time and effort to create MFO routines needs to be considered

Mission-Level Optimization

• MLO is an alternative to system-level optimization

• Can leverage mission scenario simulations to improve communication with key stakeholders

• MLO combines several challenging aspects of optimization
• Highly stochastic UAS/counter-UAS search mission

• Sampled using definitive screening design and created surrogate models for mission success and two “intermediate” variables
Mission-level Optimization Results

- Solution improved over other designs with no crashes
- Intermediate variables provide opportunities and difficulties
- Capability to run simulation faster than real time is important

Future Research

• Extend and validate MDO architecture and MFO work with new models currently under development

• Conduct an in-depth literature review of mission-level modeling and define and test a new strategy for MLO

• Combine MDO architectures, MFO methods, and MLO strategy to efficiently optimize a more complex mission scenario
Questions

Thank you for your time!

Brian Chell
bchell@stevens.edu