Research Task / Overview

• Cyber-physical systems are composed of diverse subsystems consisting of both physical and software components developed by different vendors.
• Stakeholders, such as DoD, have increasingly emphasized modular and open approaches to system development to improve interoperability, facilitate system evolution and technology insertion, and foster competition.
• With the advance of technology, the recognition of new consumer needs, and the detection of deficiencies in the current systems, can upgrades, replacements, or problem fixes happen quickly in a plug-and-play manner? In other words, is a cyber-physical system truly modular?

Data & Analysis

OpenWrt: A Linux operating system targeting embedded devices.
MdPnP: The medical device “Plug-and-Play” interoperability program advancing safe and secure interoperability to improve patient care.

1. Root Package View_(a.k.a. the development view).

2. Dependency Hierarchy (Sequential Task Allocation)

3. Organizational Modular Structure

4. Conceptual Structure

Goals & Objectives

• Examine the Criteria to Decompose a CPS into Modules
• Build a “Domain Concept Learner” to Identify Modularity Violations in Different Domains
• Build Decision Framework and Demonstrator

Methodology

1. Examine the Criteria to Decompose a CPS into Modules
 - Use three different criteria to decompose a large-scale, complex system into modules to represent different stakeholders concerns:
 o Package decomposition
 o Dependency hierarchy decomposition
 o Organizational structure decomposition
 - Investigate two different dimensions of relationship among modules:
 o The static structural dependencies
 o The co-change relationship

2. Build a “Domain Concept Learner” to Identify Modularity Violations in Different Domains
 - Use natural language processing (NLP) techniques to analyze project documentation and organize keywords into topics
 - Extract hardware related terms for use in co-change analysis
 - Identify relationships among topic groups to extract a semantic structure for the project

Future Research

• Short-term:
 o Cross reference learned domain concepts to modules.
 o Identify and measure modularity violations at different levels of decomposition for different stakeholders.
 o Build proof-of-concept demonstrator.

• Long-term:
 o Prioritize and visualize modularity violations for restructuring decision-making for stakeholders.
 o Provide in-depth interpretation of the root causes of modularity violations for restructuring insights.

Contacts/References

• Lu Xiao, Assistant Professor, lxiao6@stevens.edu
• Mike Pennock, Assistant Professor, mpennock@stevens.edu
• Xiao Wang, Ph.D. Student, xwang97@stevens.edu
• Joana Cardoso, Ph.D. Student, jcardoso@stevens.edu

SERC Doctoral Students Forum and Sponsor Research Review, November 7 & 8, 2018