

Modeling Spacecraft Design Activities as Rugged Fitness Landscapes

Sponsor: DASD(SE)

By

Ms. Stephanie Sharo Chiesi 6th Annual SERC Doctoral Students Forum November 7, 2018 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW 8th Floor Washington, DC 20009

www.sercuarc.org

Motivation	
Problem Description	
Design Spaces for Spacecraft System Design – Mars Rovers	
Rugged Fitness Landscapes	
Predictions and Tuning the Model	
Conclusions and Future Work	

DIGITAL

ENGINEERING

- DoD Digital Engineering Strategy
 - -Published June 2018
 - -Modernize design, development, operation and sustainment
 - -Transform acquisition and implementation
 - Improve speed for critical capability delivery to the warfighter
 - -Connected data in a digital environment

Informed decision Increased Increased Increased making/greater understanding for onfidence that th efficiency in Enhanced insight through greater flexibility capability will engineering and communication increased adaptability in perform as acquisition design transparency expected practices

- Aerospace and defense projects are some of the most complex engineered systems
 - -Expensive and long duration design and development
 - Multidisciplinary Design Analysis and Optimization (MDAO) does not capture all emergent behaviors
- Design models do not capture the impact of:
 - -Modes of communication in design and operation
 - -Effects of different communication types
 - -Correlation of these to design fitness
 - -Other coupling and relationships of design
- We need a way to study complex communications and collaboration in these types of projects to assess the impact on system design performance in the new digital engineering environments

5

- Describing the fitness of a spacecraft system
 - -Define variables to represent the design and the operational environment
 - Use models and abstraction to represent complexity
 - Interaction and coupled or emergent behavior calculated with dependent model variables
 - Levels of decomposition and variable definition impact how well the model represents reality
 - May be impacted by design team organization and task structure
- Example: Mars Rovers
 - —Complex spacecraft with specific mission goals
 - —Coupled design solution space to maximize fitness
 - Fitness defined as number of samples collected per mission versus mission cost

Image credit: https://www.nasa.gov/multimedia/imagegallery/image_feature_2154.html

- Mars Rover Design Space Model
 - Can select the N variables to be included in evaluation
 - Variables in the Rover Design model that contribute to the fitness calculation for a particular point design
 - -N = 7 for this dataset example
 - For each variable N there were 2 different values considered in the design space
 - Using the selected variables for the design vector the potential valid system configurations are evaluated to determine the fitness of each system
 - —128 solutions generated
 - Fitness defined as number of samples collected per mission versus mission cost

Design vector selection	n inte	erface	_		Х				
Select the allowable values for each parameter, then submit.									
Mission duration [sols]		100							
Wheel diameter [m]		[0.25 0.35]							
Number of RAD6000 equivalent CPUs		[1 2]							
Power system Telecommunications syst	tem	Solar RTG Direct to earth (DTE) DTE and low orbit DTE and high orbit UHF DTE and high orbit X UHF							
		Low orbit high orbit UHF high orbit X UHF							
Autonomy - long distance	Э	🗹 High (a3)	6	🗹 Low (a1)					
Autonomy - short distance	e	🗹 High (a3)	6	🗹 Low (a1)					
Autonomy - acquisition		Ves Yes	6	No No					
Autonomy - night navigat	ion	Yes	6	No No					
Instrument night processi	ing	Yes	6	No No					
Active lander		Yes	6	No No					
Submit design vect	n vector Cancel								

Highlighted design delivers most samples for lowest cost Raytheon

How fit are the resultant rover designs **Raytheon**

- We need a way to look at the impact of team communication and collaboration on design fitness without relying on a detailed design space model
 - -Valid over a range of design problems
 - -Before lengthy design and development process to build design models
- Candidate approach is an NK model from a class of mathematical (statistical) models
 - Describe the richness of epistatic interactions
 - The value of a given variable is affected by the values of other variables
 - Have been used to describe adaptive evolution in immune response as well as fitness of organizations
- Can the NK model can be tuned to show that it can be representative of the fitness space defined by complex design models?

Hav

Basic model description

- -A system has N variables, each variable can take on A possible values
- -The model assigns a "fitness contribution" to each variable (w_i)
- —This can be assigned at random from the uniform distribution on (0,1)
- The total fitness (W) of a system is an average of the fitness contributions of each variable

1	2	3	w ₁	w ₂	W ₃	W	
0	0	0	0.6	0.3	0.5	0.47	
0	0	1	0.1	0.5	0.9	0.50	
0	1	0	0.4	0.8	0.1	0.43	
0	1	1	0.3	0.5	0.8	0.53	
1	0	0	0.9	0.9	0.7	0.83	
1	0	1	0.7	0.2	0.3	0.40	
1	1	0	0.6	0.7	0.6	0.63	
1	1	1	0.7	0.9	0.5	0.70	

heon

Kayt

Contributions to fitness between coupled variables

- -K defines the number of coupled variables influencing the fitness value of w_i
- —K = 0 yields a smooth solution fitness landscape with a single peak for the solution with the optimal fitness
 - The contributions of each variable to the system fitness are entirely independent of all other variables
- —As K increases relative to N, the fitness landscape becomes rugged with multiple peaks representing local optima
 - For K = N-1 the contributions of each variable are entirely dependent of the values for all other variables in the system
- The statistical model could represent local optima and the distance to reach a local optima

Hav

NK model to align with Rover Design Fitness Landscape

- Match the model setup of the Mars Rover design model
 - -N = 7 variables, A = 2 possible values for each variable
 - -Results in 128 potential solutions

								Design Point				
								N=7, K=0	N=7, K=1	N=7, K=2	N=7, K=4	N=7, K=6
Design	N1	N2	N3	N4	N5	N6	N7	Fitness	Fitness	Fitness	Fitness	Fitness
1	0	0	0	0	0	0	0	0.4513	0.7083	0.5510	0.4090	0.4835
2	0	0	0	0	0	0	1	0.4090	0.6144	0.4194	0.3421	0.4674
3	0	0	0	0	0	1	0	0.4287	0.6930	0.4069	0.3938	0.5052
4	0	0	0	0	1	0	0	0.3977	0.5531	0.3993	0.5553	0.4521
5	0	0	0	1	0	0	0	0.5679	0.6747	0.6914	0.2974	0.5757
6	0	0	1	0	0	0	0	0.4632	0.6540	0.5009	0.4100	0.6871
7	0	1	0	0	0	0	0	0.4058	0.5426	0.4748	0.3586	0.4076
8	1	0	0	0	0	0	0	0.4405	0.7240	0.5338	0.5770	0.2530
9	0	0	0	0	0	1	1	0.3863	0.5504	0.6160	0.4438	0.3250
10	0	0	0	0	1	0	1	0.3553	0.4592	0.3621	0.6042	0.5596
11	0	0	0	1	0	0	1	0.5255	0.5808	0.5598	0.2384	0.3889
12	0	0	1	0	0	0	1	0.4208	0.5601	0.3693	0.2812	0.6081
13	0	1	0	0	0	0	1	0.3634	0.5061	0.2664	0.5607	0.2886
14	1	0	0	0	0	0	1	0.3981	0.6091	0.4702	0.4983	0.5404
15	0	0	0	0	1	1	0	0.3750	0.6648	0.4496	0.5023	0.6770
16	0	0	0	1	0	1	0	0.5452	0.6594	0.5686	0.4716	0.6202
17	0	n	1	٥	0	1	n	0 4405	0 6387	0 3568	N 4152	0 4389

How well would an NK Model **Raytheon** approximate the fitness space (1)

How well would an NK Model Raytheon

approximate the fitness space (2)

- Created a fitness landscape of potential solutions for Mars rover designs to compare to a randomly generated fitness landscape defined by an NK model
 - —K=2 and K=6 have promising potential for representing the design dataset using both the unsorted and sorted fitness plots
- Limitations of this preliminary assessment
 - -Single snapshot fitness assessment of the NK model as setup
 - Need to apply Monte Carlo analysis and look at confidence intervals to determine if this could be accepted or rejected as a feasible representation
 - -Comparison to a single design fitness model
 - Other design fitness models may have different results in terms of fitness and tuning the NK model to it
 - The evaluation metric needs to be assessed for determining potential of the representation
 - o Perhaps sorted fitness is not the best way to evaluate the goodness of fit

- There is more work to be done to determine if statistical models can represent a design fitness space
 - -More tuning required to align NK model with design fitness models
 - -More analysis to be conclusive, versus a single snapshot representation
 - Challenge of dealing with a noisy landscape with randomly generated fitness values
 - -Identifying the evaluation metric to determine success of representation
- Additional challenges need to be investigated as part of tuning
 - -What is the impact of the definition of the Ns and As
 - -How are non-homogenous problem structures handled
 - Are there indications of the parameter K in other aspects of linked digital models

128 designs created

承 16.89 Mars rover tradespace analysis tool

- 🗆 X

Display help text Status: Data saved. Proceed with [Analyze designs]. 1) Science vector Design vector: Subsystem Properties: Design vector 2) Calculation took 4.5115 seconds. Data for 128 designs (of 128 attempted) saved to ROVERS structure and to rover_designs.mat. Discarded designs: Acquisition Autonomy=0, Power=0, Rover=0, Power/Rover loop=0. Proceed with [Analyze Create designs 3) designs]. Autonomy Communications 4) Analyze designs Environment Instruments Power Rover Utility, etc. Design: < > Index: Selection zoom: 0 Graphical selection Plot control X: N/A \sim y: N/A \sim Z: N/A \sim Plot [x,y] Plot [x,y,z]) Plot rover Disable plot Show grid Show solar ar... Az: 0 - b-EI: . ► II 90 Export to figure

Selecting a point design to explore **Raytheon**

Analyze designs: 128 generated solutions **Raytheon**

16.89 Mars rover tradespace analysis tool

- 🗆 X

