RT 193: Framework for Analyzing Versioning and Technical Debt

Sponsor: RDECOM CERDEC

By
Dr. Ye Yang, Dr. Jon Wade, Turki Aleyani, Patrick Stanton
Stevens Institute of Technology
10th Annual SERC Sponsor Research Review
November 8, 2018
FHI 360 CONFERENCE CENTER
1825 Connecticut Avenue NW, 8th Floor
Washington, DC 20009

www.sercuarc.org
• Obsolescence is a complex mix of engineering, economic, and business issues with many associated uncertainties.

• Obsolescence is the inevitable consequences of dependence on COTS components in many Cyber-Physical-Systems (CPS)
 —Long lead time of CPS, tightly-coupled components, shorter upgrade cycle of COTS, no control over COTS evolution, etc.

• “Future Combat System had 153 relevant systems to deal with. If every one updated once a year, that would be a change every other day!”
 ---- Barry Boehm, USC

• “70 percent of electronics are obsolete prior to system fielding, and one component may become obsolete five to ten times during the weapon systems life cycle.” ---- Anthony Haynes, AMRDEC
• **Problem Statement:**
 – COTS components in are increasingly imposing long-term management issues of many CPS systems
 o such as obsolescence, poor reliability, lack of readiness, and inability to be readily maintaining systems in an efficient and effective manner.

• **Motivations:**
 – Obsolescence is the consequence of COTS technical debt that can be possibly captured and managed in early CPS life cycle activities, i.e. COTS acquisition.
 – Increase awareness of COTS technical debt
 – Support early identification, assessment, and management of COTS technical debt
Research Framework

1. Understanding trend in COTS related CPS Obsolescence studies
2. Align existing MPTs
 - Identify gap
3. Taxonomy
 - Meta attributes
 - Simple Model

- Literature Review
- Mapping Framework
- COTS Technical Debt
Literature Review

- Follow Kitchenham’s systematic literature review methodology

- Search Protocol
 - Keywords:
 - (“Technical debt” OR “Obsolescence”) AND
 - (“COTS” OR “NDI” OR “GOTS” OR “Component*”) AND
 - (“cyber physical system” OR “military systems” OR (“embedded systems”))
 - Databases
 - DMSMS; ACM Digital Library, IEEExplore, ScienceDirect, SpringerLink, Scopus, and Web of Science

- Search process
 - Three-round
 - Snowballing

- Results: a collection of 57 literatures included for further analysis
Literature Review Questions

RQ1: Trend in existing MPTs for COTS obsolescence?

RQ2: Types of data used?

RQ3: Sources of COTS obsolescence?

RQ4: Metrics for analyzing COTS obsolescence cost/risk?

RQ5: COTS obsolescence management approaches?

The review process focuses on extracting key information from individual study with regarding to the above review questions.
RQ1: What are the trend in existing MPTs for COTS obsolescence?

• Four categories to characterize current MPTs:
 — Type:
 o Methods
 o Processes
 o Tools
 o Others
 — Sector:
 o Academia
 o Industry
 o Government
 o Others

 — Targeted DoD Phases:
 o Materiel solution analysis
 o Technology maturation and risk reduction
 o Engineering and manufacturing development
 o Production and deployment
 o Operations and support

 — Granularity of obsolescence issue:
 o Component level
 o System level
• Methods
 — Design Refresh; Life Time Buy; Last Time Buy; Substitution; Forecasting Model; VHDl-Based Model; Design Longevity Agreements, etc.

• Processes
 — Open source software products; Software Application programming Interfaces (API) and wrappers; After-market Supplier; Emulation/Cloning; Software Obsolescence Trigger Map

• Tools
 — COCOTS tool for estimating cost associated with COTS evaluation, tailoring, and integration; MOCA (mitigation of obsolescence cost analysis) tool; Total Obsolescence Management Capability Assessment Tool (TOMCAT); Component Information Management System
RQ2: Types of data used?

Five categories of data

- Technology forecasting: 20
 - E.g. High risk COTS/CCA (Circuit Card Assembly), OEM, BOM, contract incentives
- Business Trending (Demand forecasting): 10
 - E.g. regression modelling to forecast business trend based on the obsolescence data and increased functionality of integrated circuits
- Obsolescence data: 9
 - E.g. electronic/sw/media components
- Logistics data: 17
 - E.g. DMSMS
- Others: 19
RQ3: Sources of COTS obsolescence?

- Six categories of COTS sources:
 - S/w and media support tooling: 22
 - E.g. operating system, ERP, database, etc.
 - Electronic components/Mechanical components: 20
 - E.g. EEE (electrical, electronic, mechanical) components, etc.
 - Test equipment: 4
 - Documentation: 2
 - Skills/personnel/training: 1
 - Others: 8
RQ4: Metrics for analyzing COTS obsolescence cost/risk?

- Seven categories of COTS metrics used in existing studies:
 - Multiplicity (e.g. #of COTSs, #of components, etc.): 8 studies
 - Complexity (e.g. system complexity, application complexity, Requalification complexity, etc.): 23
 - Interdependency (e.g. Coupling level and package density, etc.): 20
 - Platform diversity: 11
 - PBS (product breakdown structure): 7
 - OM strategy: 17
 - Financial Metrics (e.g. RO, NPV, etc.): 14
Example 1 - Cost metrics for requalification of air/safety critical components [Romero Rojo et al. 2012]

- The cost metrics represent the non-recurring costs of resolving an obsolescence issue using each of the resolution approaches.
 - during the contracted period within the in-service phase.

<table>
<thead>
<tr>
<th>Obsolescence management approach</th>
<th>Integration level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>Existing stock</td>
<td>£300</td>
</tr>
<tr>
<td>Life time buy</td>
<td>£2,000</td>
</tr>
<tr>
<td>Cannibalisation</td>
<td>£1,700</td>
</tr>
<tr>
<td>Equivalent</td>
<td>£3,500</td>
</tr>
<tr>
<td>Alternative</td>
<td>£10,100</td>
</tr>
<tr>
<td>Authorised aftermarket</td>
<td>£13,000</td>
</tr>
<tr>
<td>Emulation</td>
<td>£52,100</td>
</tr>
<tr>
<td>Minor redesign</td>
<td>£50,100</td>
</tr>
<tr>
<td>Major redesign</td>
<td>£250,000</td>
</tr>
</tbody>
</table>

Volatility effects dominate increased integration experience

Volatility effects just cancel increased integration experience

Increased integration experience dominates volatility effects

F_n (synchronization, complexity of system, no. planned upgrades, etc.)
RQ5: COTS obsolescence management approaches?

- Three categories:
 - **Strategic**
 - Supply-chain: life-time buy and partnering agreement
 - **Proactive**
 - Design: open system architecture, modularity, use of multi-sourced components
 - Planning: obsolescence mgmt. plan, technology roadmap, monitoring tools
 - **Reactive**
 - Some components: last-time buy, cannibalization?
 - Form, fit & function (FFF) replacement (e.g. equivalent-component)
 - Emulation or redesign (e.g. use of state-of-art technology to replicate or redesign the component)

![Bar chart showing the number of studies per category](chart.png)
• Proactive planning at system level is a largely overlooked topic and there is lack of study

• Opportunity: COTS Technical Debt Identification
 — Utilization existing OM MPTs must be strategically coupled and/or replaced with capabilities in the acquisition time, e.g.:
 o Capture interdependencies of COTS components in CPS systems;
 o Identify “technical debt” items associated with COTS decisions;
 o Predict the effects of COTS technical debt items on the system across its system life cycle;
 o Make informed technical decisions associated with COTS usage.
Research Framework

- Literature Review
 - Understanding trend in COTS related CPS Obsolescence studies

- Mapping Framework
 - Align existing MPTs
 - Identify gap

- COTS Technical Debt
 - Taxonomy
 - Meta attributes
 - Simple Model
Mapping Framework

Hybrid Flow of Obsolescence Risk and COTS Technical Debt Management
The Notion of Technical Debt

• Originated in software engineering field, coined by Ward Cunningham in 1992
 — Immature work, compromising in one dimension in order to get benefits in other dimensions
 — Initially concerning "refactoring" at code level (i.e. implementation) in agile software development

• Evolved to span across all life cycle phases
 — a metaphor reflecting technical compromises that can yield short-term benefit but may hurt the long-term health of a software system

• Technical Debt Quadrants [Martin Fowler, 2009]

Technical Debt Quadrants

<table>
<thead>
<tr>
<th></th>
<th>Reckless</th>
<th>Prudent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliberate</td>
<td>"What's Layering?"</td>
<td>"We must ship now and deal with the consequences"</td>
</tr>
<tr>
<td>Accidental</td>
<td>"We don't have time for design"</td>
<td>"Now we know how we should have done it"</td>
</tr>
</tbody>
</table>
What Constitutes Technical Debt?

• Technical Debt Landscape (Ozkaya, Nord, Kruchten, 2012)
 —Differentiate visible elements from invisible elements

 —Propose to limit debt to the invisible elements
 ○ Four colors in a backlog
Some Existing Taxonomies on Technical Debt

- **Rubin’s Taxonomy**
 - Context: within Agile team
 - Naïve technical debt
 - Unavoidable technical debt
 - Strategic technical debt

- **Clark’s Taxonomy**
 - Context: Riot Games (League of Legends)
 - Local debt
 - MacGyver debt
 - Foundational debt
 - Data debt

- **Bavani’s Taxonomy**
 - Context: distributed teams & agile testing
 - Degree of awareness of technical debt across distributed teams
 - Degree of alignment in managing technical debt across distributed teams

Tradeoff can be an alternate approach to lessen the impact of technical issues or debt
Research Framework

- Understanding trend in COTS related CPS Obsolescence studies
- Align existing MPTs
- Identify gap
- Taxonomy
- Meta attributes
- Simple Model
Technical Debt as A Metaphor for Predicting COTS Obsolescence

<table>
<thead>
<tr>
<th>COTS Benefits</th>
<th>COTS Implications</th>
<th>COTS “Technical Debt”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available now, earlier payback</td>
<td>Licensing and procurement delays</td>
<td>N/A</td>
</tr>
<tr>
<td>Avoids expensive development & maintenance</td>
<td>Up front license fees</td>
<td>N/A</td>
</tr>
<tr>
<td>Predictable license costs & performance</td>
<td>Recurring maintenance fees</td>
<td>Yes. Incurred COTS upgrading cost and system re-evaluation/re-testing cost</td>
</tr>
<tr>
<td>Rich in functionality</td>
<td>Reliability often unknown/ inadequate; Unnecessary features compromise usability, security, performance</td>
<td>Yes. Incurred cost to take care of functional/non-functional requirement mismatch and additional verification & validation</td>
</tr>
<tr>
<td>Broadly used, mature technology</td>
<td>Functionality, efficiency constraints</td>
<td>Yes. Incurred cost to tailor to specific CPS context; increased limitation over system evolution</td>
</tr>
<tr>
<td>Frequent upgrades often anticipate organization’s needs</td>
<td>No control over upgrades/maintenance</td>
<td>Yes. Increased obsolescence risk due to life cycle mismatch between CPS system and COTS components</td>
</tr>
<tr>
<td>Dedicated support organization</td>
<td>Dependency on vendor</td>
<td>Yes. Increased obsolescence risk due to documentation and support dependency</td>
</tr>
<tr>
<td>Hardware/software independence</td>
<td>Integration not always trivial; incompatibilities among different COTS</td>
<td>Yes. Incurred cost to evaluate and enhance COTS interoperability in COTS-intensive CPS.</td>
</tr>
<tr>
<td>Tracks technology trends</td>
<td>Synchronizing multiple-vendor upgrades</td>
<td>Yes. Increased obsolescence risk due to life cycle mismatch between CPS system and COTS components</td>
</tr>
</tbody>
</table>
COTS TD Taxonomy in CPS Context

<table>
<thead>
<tr>
<th>COTS TD Category</th>
<th>Description</th>
<th>Analogy to existing work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>The degree of functionality mismatch between COTS capabilities and system needs.</td>
<td>Local TD; Data TD</td>
</tr>
<tr>
<td>Performance</td>
<td>The degree of mismatches between COTS capabilities and system needs, w.r.t. quality/extra-functional properties such as: (1) Reliability – mainly of hardware; (2) Safety assurance – of software and hardware; (3) Performance in terms of e.g. bandwidth, processing capability, memory etc.</td>
<td>MacGyver TD; Data TD</td>
</tr>
<tr>
<td>Interoperability</td>
<td>The degree of interface/ assumption mismatches among various interdependent COTS components, as well as among COTS and system custom components.</td>
<td>MacGyver TD; Data TD</td>
</tr>
<tr>
<td>Configuration Version</td>
<td>CPS configuration version planning needs to address solution availability plan. Greater tendency of COTS version upgrade/refresh may lead to more obsolete COTS.</td>
<td>Unavoidable TD; Local TD; MacGyver TD; Foundational TD; Data TD</td>
</tr>
<tr>
<td>Documentation & Support</td>
<td>Lack of documentation and vendor support will seriously impact on issue resolution related to obsolete COTS.</td>
<td>Unavoidable; Data TD</td>
</tr>
<tr>
<td>System Evolution Limitations</td>
<td>Requirements imposed by COTS may place great limitation on system evolution.</td>
<td>Unavoidable TD; Foundational TD; Data TD</td>
</tr>
<tr>
<td>Organic</td>
<td>People-centric perspective of TD focusing on organizational decision-making, behaviors, and practices associated with those personnel responsible for introductions of new technologies & systems and/or the sustainment of existing systems</td>
<td>Local TD; Naïve TD; Strategic TD</td>
</tr>
</tbody>
</table>
Attributes For Representing A COTS TD Item

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>A unique identifier for the COTS TD item.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of a specific COTS TD item</td>
</tr>
<tr>
<td>Location</td>
<td>The location of the identified COTS TD item, e.g. the name of the COTS(s) with which it is associated.</td>
</tr>
<tr>
<td>Accountable Party</td>
<td>The party responsible to repay the COTS TD item, e.g. COTS vendor, integration team, program office, specific organization. This identifies the “accountable” debt-holder for the liability. The Accountable Party is identified at the start of a new design/development/modernization effort, and can assign TD “tracking” and “maintenance of TD visibility” within its span of authority/control.</td>
</tr>
<tr>
<td>Type</td>
<td>The COTS TD type that the COTS TD item is classified into.</td>
</tr>
<tr>
<td>Description</td>
<td>General information on the COTS TD item.</td>
</tr>
<tr>
<td>Open date/time</td>
<td>The specific date/time when the COTS TD is identified.</td>
</tr>
<tr>
<td>Principle</td>
<td>The estimated cost of repaying the COTS TD item.</td>
</tr>
<tr>
<td>Interest amount</td>
<td>The estimated extra cost of tolerating the COTS TD item.</td>
</tr>
<tr>
<td>Interest probability</td>
<td>The probability that the interest for the COTS TD item needs to be repaid.</td>
</tr>
<tr>
<td>Contagion</td>
<td>The degree of spreading of the COTS TD item through the interfaces with other system components, if this TD is allowed to continue to exist.</td>
</tr>
<tr>
<td>Context</td>
<td>A certain implementation context of a specific COTS TD item</td>
</tr>
<tr>
<td>Propagation rule</td>
<td>How the COTS TD item impacts the related parts of the CPS system</td>
</tr>
<tr>
<td>Intentionality</td>
<td>Is the COTS TD item Intentionally or unintentionally incurred?</td>
</tr>
</tbody>
</table>
COTS TD Management Activities

<table>
<thead>
<tr>
<th>TDM Activity</th>
<th>Description/Example</th>
<th>Techniques</th>
<th>Example metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD identification</td>
<td>Detects TD caused by intentional or unintentional technical decisions</td>
<td>Static code analysis; dependency analysis; checklist</td>
<td>Violations of coding rules, lack of tests; static code metrics,</td>
</tr>
<tr>
<td>TD measurement</td>
<td>Quantifies the benefit and cost of known TD in a system through estimation techniques</td>
<td>Expert Estimation; estimation models; cost categorization; solution comparison</td>
<td>code metrics; operational metrics; ROI; Cost-benefit ratio; Real options</td>
</tr>
<tr>
<td>TD prioritization</td>
<td>Ranks identified TD items according to predefined rules, which is to be repaid first, and which can be tolerated until later releases.</td>
<td>Cost benefit analysis; High remediation cost first; Portfolio approach; High interest first</td>
<td>Portfolio approach considering TD items along with other new functionalities and bugs as risk and investment opportunities.</td>
</tr>
<tr>
<td>TD prevention</td>
<td>Aims to prevent certain TD from being incurred.</td>
<td>Development process improvement; design decision support; lifecycle cost planning; human factor analysis</td>
<td>Improve process to prevent certain type of TD; evaluate and choose candidate solutions with less potential TD</td>
</tr>
<tr>
<td>TD monitoring</td>
<td>Watches the change of cost and benefit of unresolved TD over time</td>
<td>Threshold-based; Planned check; TD propagation tracking; TD plot; TD monitor with quality attribute focus</td>
<td>Define threshold for quality metrics, and issue warnings if threshold is not met.</td>
</tr>
<tr>
<td>TD repayment</td>
<td>Resolves or mitigates TD</td>
<td>Reengineering, rewriting; refactoring; bug fixing; fault tolerant; repackaging; automation</td>
<td>Make changes to the code, design, or architecture of the software system without altering external behavior, in order to improve internal quality.</td>
</tr>
<tr>
<td>TD representation/ documentation</td>
<td>Provides ways to represent and codify TD in a uniform manner to address concerns of particular stakeholder</td>
<td>Various format of representing TD items.</td>
<td>Example TD data fields: ID, Location, Responsible / author, Type, Description, date /Time, principle, interest amount, interest probability, relation to other TD, context, propagation rule, intentionality</td>
</tr>
<tr>
<td>TD communication</td>
<td>Makes identified TD visible to stakeholders so that it can be discussed and further managed.</td>
<td>TD dashboard; backlog; dependency visualization; code metric visualization; TD list; TD propagation visualization</td>
<td>Dashboard or other visualization tool displaying undesirable dependencies, e.g. overly complex dependencies between system components</td>
</tr>
</tbody>
</table>
Hierarchical View of a Simple Technical Debt Model for COTS-Intensive CPS

Technical Debt = f_S(changes across entire system, required work, TD management strategy)

Technical Debt = f_{PU}(changes across a PU, required work, TD management strategy)

Technical Debt = f_C(changes within a component, required work, TD management strategy)
Modeling COTS-intensive CPS

- COTS-intensive CPS
 - A set of physical units, i.e. subsystems, \(\{\text{SS}_i\} \), \(i=1, 2, \ldots, M \)
 - Attributes:
 - Budget, schedule
 - %req’ts covered by COTS
 - Planned upgrade cycle
 - Acquisition cost
 - COTS technical debt

- Dependency matrix
 - Interface requirements among all components

- Multi-Agent Models
 - Each physical unit, \(\text{SS}_i \)
 - A set of hardware and/or software components, \(\{\text{C}_{ij}\} \), \(j=1, 2, \ldots, n_i \)
 - Type: Application, Infrastructure, Network, other
 - Each component, \(\text{C}_{ij} \)
 - Attributes: %req’t’s gap; acquisition cost, upgrade cycle, upgrading cost
 - Type: COTS h/w, COTS s/w, custom h/w, custom s/w, other
Modeling COTS Configuration Version
Technical Debt

- Discrete Event Model
 - COTS change events
 - COTS change:
 - Upgrade cycle: Probabilistic distribution function: e.g. [6month, 12month]
 - Change ratio: random variable \(\{0, 1\} \), larger number indicating greater portion of COTS is changed
 - TD management actions
 - TD Principal Measurement
 - Component level: \(f_C(\text{change ratio, required work, TD reduction strategy}) \)
 - Physical Unit level: \(f_{PU}(\text{changes across a PU, required work, TD reduction strategy}) \)
 - System level: \(f_S(\text{changes across entire system, required work, TD reduction strategy}) \)
 - TD Reduction strategies
 - 0: no work
 - 1: upgrade every version
 - 2: upgrade every other version
 - 3: upgrade until end-of-life
 - TD Dynamic Forecasting
 - \(f(\text{TD principal, probability of TD interest, TD interest amount, } t) \)
COTS Change Propagation and Change Impact Modeling

- COTS Change Impact Analysis
 - Dependency matrix
 - Coupling rate
 - State transition model
 - InService
 - Impacted
 - Obsolete
COCOTS is an effort/cost estimation model for COTS integration, developed at USC
- 3 submodels: COTS assessment, tailoring, integration
- 15 cost drivers: COTS integrator, COTS vendor, system

Extension with 3 additional security drivers
- Required system EAL level
- COTS certified EAL level
- Degree of unused COTS features

COCOTS Risk Analyzer
- Identify COTS integration risk from cost driver inputs
 - A pair of cost drivers with two opposite extreme rating levels, e.g.
 - very high system complexity vs. very low COTS product maturity,
 - very high system complexity vs. very low COTS integrator capability
- Knowledge base of 24 rules

COTS TD Interest Probability based on COCOTS Model

<table>
<thead>
<tr>
<th>SIZE</th>
<th>AAREN(Application Architectural Engineering)</th>
<th>ACIEF(COTS Integrator Experience with Product)</th>
<th>ACIPC(COTS Integrator Personnel Capability)</th>
<th>AXCIP(Ext Integrator Experience with COTS Integration Processes)</th>
<th>APCON(Integrator Personnel Continuity)</th>
<th>ACPMT(COTS Product Maturity)</th>
<th>ACSEW(COTS Supplier Extension Willingness)</th>
<th>APCPX(COTS Product Interface Complexity)</th>
<th>ACPPS(COTS Supplier Produce Support)</th>
<th>ACPTD(COTS Supplier Provided Training and Documentation)</th>
<th>ACPER(Constraints on COTS Technical Performance)</th>
<th>ASPRT(Application System Portability)</th>
<th>APEAL (Application Evaluated Assurance Level)</th>
<th>ACEAL (COTS Evaluated Assurance Level)</th>
<th>ACPUF (percentage of COTS’ unused features)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>TD Risk Probability:</td>
<td>>=50%</td>
<td>[40%, 50%)</td>
<td>[20%, 40%)</td>
<td></td>
</tr>
</tbody>
</table>
Examples of Decision Scenario Simulation

- Scenario 1: Selecting different COTS-based solutions
- Scenario 1: Dynamics of TD aggregation and reduction

*Fn (synchronization, complexity of system, no. planned upgrades, etc.)
Conclusions and Future Directions

• Conclusions
 — Compelling and critical need for a Systems Engineering technical debt metaphor grows
 — The notions of COTS technical debts will help to inform COTS decision making practices in the acquisition process to avoid unaffordable obsolescence issues particularly in the sustainment phase
 — Taxonomy of COTS-related technical debt can support early identification, communication, and assessment of obsolescence risks in CPS system engineering life cycles

• Future directions:
 — Map major obsolescence issues in existing case studies to the proposed COTS TD taxonomy
 — Modelling and Simulation of COTS changes and impact on technical debt aggregation within CPS
 — Align COTS TD management techniques and align with existing acquisition activities
Thank you!