

Inference Engine applied to School Security for Robot-Man Teaming

Sponsor: US Army ARDEC SED

By
Mr. Jorge R. Buenfil
6th Annual SERC Doctoral Students Forum
November 7, 2018
FHI 360 CONFERENCE CENTER
1825 Connecticut Avenue NW
8th Floor
Washington, DC 20009

www.sercuarc.org

Presentation Plan

- 1. Motivation
- 2. Approach
- 3. Architecture
- 4. Design
- 5. V&V
- 6. Future Work
- 7. Q & A

Academic Committee

Ph.D. advisor:

Jose Ramirez-Marquez, Ph.D.
SIT Enterprise Science and Engineering

Committee:

Jon Wade, Ph.D.
SIT Systems and Software Engineering

Mo Mansouri, Ph.D.
SIT Systems and Software Engineering

Jason Cook, Ph.D.
US Army RDECOM ARDEC

School Security Problem

Humans: best at rapid grasp of situations + intuition

Robots: tireless execution of the same tasks with no loss of attention

Research Scope

Aspects that are part of the problem scope:

- System obsolescence
- Trustworthy systems
- Data fusion
- Systems architecture
- Spoofing prevention

Levels of Abstraction

Concept of Operations

Methodology

- Application of computer vision in the visible, thermal and radiation energy bands to find weapons, even concealed.
- Application of transfer learning to convolutional neural networks to recognize desired categories of contraband.
- Exploration of multiple architecture frameworks to determine which one is more likely to provide more compatibility with other systems, modularity, flexibility, and scalability.
- Data fusion of dissimilar sensor technologies.
- Separation of concerns between sensor management and decision support system.

Architectural Concept

Architectural Schema

Events

SE Design Patterns

SWEEP Architecture

System Dynamics + NN

Prototype Implementation

Sequence of Operations

Validation Prototype

Validation Goals

- ✓ Ability to train a convolutional neural network with ~100 training images for each category it needs to recognize.
- ✓ High precision with low rate of false positives for recognition of contraband under different light conditions, picture size, and angle of view.
- ✓ Ability to recognize faces with ~10 training images per person.
- ✓ High precision with low rate of false positives for facial recognition from inexpensive videocameras at distances of over 20 ft.
- ✓ Ability to merge multiple wireless sensor feeds (4) onto a single monitor screen with near real-time image recognition.
- ✓ Ability to maintain secure encrypted communications between sensors and server.

Test Examples

Metrics

Precision

Recall

F1 Score

$$\frac{TP}{TP+FP}$$

$$\frac{TP}{TP+FN}$$

$$\frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

Validation Results

		People	Knives	Pistols	Rifles	Bullets	Generic	Avg.
GoogLeNet p2	Top-1 Precision	100%	100%	100%	100%	100%	18%	86%
	Top-1 Recall	6%	22%	74%	86%	8%	18%	36%
	Top-1 F1	11%	36%	85%	92%	15%	18%	43%
	Top-1 Accuracy	53%	61%	87%	93%	55%	18%	61%
	Top-5 Precision	100%	100%	100%	100%	100%	41%	90%
	Top-5 Recall	24%	64%	98%	98%	38%	41%	61%
	Top-5 F1	39%	78%	99%	99%	55%	41%	69%
	Top-5 Accuracy	62%	83%	99%	99%	69%	41%	75%
SafetyNet 2	Top-1 Precision	98%	100%	100%	100%	91%	100%	98%
	Top-1 Recall	100%	98%	88%	90%	98%	94%	95%
	Top-1 F1	99%	99%	93%	95%	94%	97%	96%
	Top-1 Accuracy	99%	99%	94%	95%	94%	91%	95%
SafetyNet 3	Top-1 Precision	100%	100%	100%	100%	92%	100%	99%
	Top-1 Recall	100%	100%	94%	98%	100%	100%	99%
	Top-1 F1	100%	100%	97%	99%	98%	100%	99%
	Top-1 Accuracy	100%	100%	97%	99%	99%	100%	99%

Validation Achievements

- ✓ Ability to react to a specified set of conditions and take immediate action.
- ✓ Graphical user interface to show the security guard the situation in the area of observation from multiple cameras on the same screen.
- ✓ Ability to request human assistance to resolve alerts and alarms.
- ✓ Ability to run multiple convolutional neural networks and compare results to use a voting system to determine the most likely assessment of the presence of contraband.
- ✓ Ability to recognize contraband, people, and different kinds of animal in near total darkness using IR illuminators.

Contributions

- ✓ Man/Unmanned Team procedures that direct tasks to the best performer.
- ✓ Solutions to systems engineering challenges to architect and design an inference engine with high performance, low cost, and rapid development.
- √ Temporal context to neural network predictions
- ✓ Leveraging of supervised machine learning to delay system obsolescence

Ongoing Research

APPENDIX

System State Diagram

Technology Readiness

TRL	Definition	Description	Supporting Information
1	Basic principles observed and	Lowest level of technology readiness. Scientific research	Published research that identifies the principles
	reported	begins to be translated into applied research and	that underlie this technology. References to who,
		development (R&D). Examples might include paper	where, when.
		studies of a technology's basic properties.	
2	Technology concept and/or	Invention begins. Once basic principles are observed,	Publications or other references that outline the
	application formulated	practical applications can be invented. Applications are	application being considered and that provide
		speculative, and there may be no proof or detailed	analysis to support the concept.
		analysis to support the assumptions. Examples are limited	
		to analytic studies.	
3	Analytical and experimental	Active R&D is initiated. This includes analytical studies	Results of laboratory tests performed to measure
	critical function and/or	and laboratory studies to physically validate the analytical	parameters of interest and comparison to
	characteristic proof of concept	predictions of separate elements of the technology.	analytical predictions for critical subsystems.
		Examples include components that are not yet integrated	References to who, where, and when these tests
		or representative.	and comparisons were performed.
4	Component and/or breadboard	Basic technological components are integrated to	System concepts that have been considered and
	validation in laboratory	establish that they will work together. This is relatively	results from testing laboratory-scale
	environment	"low fidelity" compared with the eventual system.	breadboard(s). Reference to who did this work
		Examples include integration of "ad hoc" hardware in the	and when. Provide an estimate of how
		laboratory.	breadboard hardware and test results differ from
			the expected system goals.
5	Component and/or breadboard	Fidelity of breadboard technology increases significantly.	Results from testing laboratory breadboard
	validation in relevant	The basic technological components are integrated with	system are integrated with other supporting
	environment	reasonably realistic supporting elements so they can be	elements in a simulated operational environment.
		tested in a simulated environment. Examples include	How does the "relevant environment" differ from
		"high-fidelity" laboratory integration of components.	the expected operational environment? How do
			the test results compare with expectations? What
			problems, if any, were encountered? Was the
			breadboard system refined to more nearly match
			the expected system goals?
6	System/subsystem model or	Representative model or prototype system, which is well	Results from a laboratory testing of a prototype
	prototype demonstration in a	l ·	system that is near the desired configuration in
	relevant environment	Represents a major step up in a technology's	terms of performance, weight, and volume. How
		demonstrated readiness. Examples include testing a	did the test environment differ from the
		prototype in a high-fidelity laboratory environment or in	operational environment? Who performed the
		a simulated operational environment.	tests? How did the test compare with
			expectations? What problems, if any, were
			encountered? What are/were the plans, options,
			or actions to resolve problems before moving to
			the next level?
7	System prototype	Prototype near or at planned operational system.	Results from testing a prototype system in an
	demonstration in an	Represents a major step up from TRL 6 by requiring	operational environment. Who performed the
	operational environment	demonstration of an actual system prototype in an	tests? How did the test compare with
		operational environment (e.g., in an aircraft, in a vehicle,	expectations? What problems, if any, were
		or in space).	encountered? What are/were the plans, options,
			or actions to resolve problems before moving to
	A-t	Tools and any hard home arranged to the first of	the next level?
8	Actual system completed and	Technology has been proven to work in its final form and	Results of testing the system in its final
	qualified through test and	under expected conditions. In almost all cases, this TRL	configuration under the expected range of
	demonstration	represents the end of true system development.	environmental conditions in which it will be
		Examples include developmental test and evaluation	expected to operate. Assessment of whether it
		(DT&E) of the system in its intended weapon system to	will meet its operational requirements. What
		determine if it meets design specification.	problems, if any, were encountered? What
			are/were the plans, options, or actions to resolve
-	Actual custom province thereigh	Actual application of the technology in its final form and	problems before finalizing the design?
9	Actual system proven through	, ,	OT&E reports.
	successful mission operations	under mission conditions, such as those encountered in	
		operational test and evaluation (OT&E). Examples include	
		using the system under operational mission conditions.	
1			