
SSRR 2018 November 8, 2018

RT-205: Identifying and Measuring Modularity
Violations in Cyber-physical Systems

Sponsor: DASD(SE)

By
Dr. Lu Xiao

Dr. Michael Pennock
10th Annual SERC Sponsor Research Review

November 8, 2018
FHI 360 CONFERENCE CENTER

1825 Connecticut Avenue NW, 8th Floor
Washington, DC 20009

www.sercuarc.org

SSRR 2017 November 8, 2017 2

Agenda

• Introduction

• Module decomposer

―Package view (development view)

―Dependency hierarchy view (sequential work allocation)

―Organizational view (vendor-lock in)

• Domain concept learner

• Next Steps

SSRR 2017 November 8, 2017 3

Agenda

• Introduction

• Module decomposer

―Package view (development view)

―Dependency hierarchy view (sequential work allocation)

―Organizational view (vendor-lock in)

• Domain concept learner

• Next Steps

SSRR 2017 November 8, 2017 4

Cyber-physical Systems (CPS)

• The term cyber-physical system was first
coined in 2006. A cyber-physical system
is an integration of computation with
physical processes.

• Physical and software components are
deeply intertwined and interacting with
each other under changing context.

• Cyber-physical systems have gained
wide-spread application in diverse areas
including: civil infrastructure, energy,
healthcare, transportation, automotive,
smart appliances, and others

SSRR 2017 November 8, 2017 5

Modularity Violations on CPS

• Two supposedly independent modules are actually coupled
in the evolution of the system.

o For example, an update to one module requires a
corresponding update to another module.

shared
“secrets”

SSRR 2017 November 8, 2017 6

Prior Results from RT-180

• We conducted preliminary studies on OpenWrt and MD PnP
to prove the feasibility of implying hardware related
modularity violations using software data.

• Findings include:

1. The OpenWrt is more modularized than about 85% of the
129 (commercial and open source) traditional software
systems.

2. In OpenWrt, hardware concepts are the potential
underlying causes of software-level modularity violations.

3. Using software side data help to imply hardware-related
modularity violations in OpenWrt.

SSRR 2017 November 8, 2017 7

Limitations of Prior Work

• In the incubator phase, we treated source files as the
granularity of a module. This is appropriate from the
perspective of a low-level developer. However, a project
owner views modules as cohesive functional components to
deliver the product value and competitiveness.

• In the incubator phase, we used manually extracted
hardware-related keywords as heuristics to identify
modularity violations. However, the keywords developed for
one project domain may not be applicable to another
project domain.

SSRR 2017 November 8, 2017 8

Proposed Work

• Examine the Criteria to
Decompose a CPS into
Modules

• Build a “Domain
Concept Learner” to
Identify Modularity
Violations in Different
Domains

• Build Decision
Framework and
Demonstrator

SSRR 2017 November 8, 2017 9

Proposed Work

Examine the Criteria to
Decompose a CPS into
Modules

Build a “Domain
Concept Learner” to
Identify Modularity
Violations in Different
Domains

• Build Decision
Framework and
Demonstrator

SSRR 2017 November 8, 2017 10

Agenda

• Introduction

• Module decomposer

―Package view (development view)

―Dependency hierarchy view (sequential work allocation)

―Organizational view (vendor-lock in)

• Domain concept learner

• Next Steps

SSRR 2017 November 8, 2017 11

Case Study Subjects

• OpenWrt: A Linux operating system targeting embedded devices.
It frees you from the application selection and configuration
provided by the vendor and allows you to customize the device
through the use of packages to suit any application.

―https://openwrt.org/

• MdPnP: The medical device “Plug-and-Play” interoperability
program advancing safe and secure interoperability to improve
patient care.

―http://www.mdpnp.org/

https://openwrt.org/
http://www.mdpnp.org/

SSRR 2017 November 8, 2017 12

Case Study Subjects

• OpenWrt

• 1063 source files (in c language)

• 80 developers

• 42018 commits

• 1996 commits include .h or .c files

• 40107 commits not include any .h nor .c files

• MdPnp:

• 808 source files (in java language)

• 7 developers

• 1611 commits

• 993 commits include .java file,

• 618 commits not include any .java file

SSRR 2017 November 8, 2017 13

Criteria for Modular Decomposition

• There are different criteria to decompose a large-scale, complex
system into modules based on different stakeholders concerns.

1. The natural package decomposition (a.k.a. the development view).

2. The dependency hierarchy decomposition that represents a system as
layers.

3. The modular structure based on the organizational structure of a system.

• There are two different dimensions of relationship among
modules:

―The static structural dependencies

―The co-change relationship

SSRR 2017 November 8, 2017 14

Md PnP

• “interop-lab” and “devices”
• “interop-lab” and “data-types”

OpenWrt

• Every module is connected with
almost every other modules

Root Package: Structural Dependencies

• First impression: MD PnP has simpler

modular structure

SSRR 2017 November 8, 2017 15

MD PnP OpenWrt

Root Package: Co-change Relationship

• The red lines: the number of cross-module changes
• The red characters: the number of inner module changes

SSRR 2017 November 8, 2017 16

MD PnP

• 90% inner module changes
• 10% cross module co-changes

OpenWrt

• 98% inner module changes
• 2% cross module co-changes

Root Package: Co-change Relationship

SSRR 2017 November 8, 2017 17

MD PnP OpenWrt

Root Package: Co-change Relationship

• Modules in MD PnP are more likely to co-change with

each other compared to OpenWrt.

SSRR 2017 November 8, 2017 18

MD PnP OpenWrt

Root Package: Expensive Modules

• In both projects, some modules are more expensive to

maintain or replace than other modules.

Module “devices”:

Size: 37%

Change: 11%

Module “interop-lab”:

Size: 47%

Change: 86%

Module “package”:

Size: 29%

Change: 12%

Module “tools”:

Size: 10%

Change: 20%

Module “target”:

Size: 58%

Change: 67%

SSRR 2017 November 8, 2017 19

Fine-grained Package: Structural Dependencies

• Some stakeholders need more fine-grained modular structure for
more detailed guidance.

• MD PnP: Fine-grained Package Structure Visualized:

SSRR 2017 November 8, 2017 20

Fine-grained Package: Structural Dependencies

• First impression: the structure of MD PnP is clearly layered

― module “demo-devices” plays a role of façade.

SSRR 2017 November 8, 2017 21

Fine-grained Package: Co-change Relationship

• Reality: everything changes with everything else!

• Thus, high maintenance costs, vendor lock-in, …

SSRR 2017 November 8, 2017 22

• We filter out co-change relationships whose weight is less than 10

• There are only 9 modules with a co-change weight of 10 or more

Fine-grained Package: Co-change Relationship

SSRR 2017 November 8, 2017 23

• Stakeholders should give top priority to these 9 modules

Fine-grained Package: Co-change Relationship

SSRR 2017 November 8, 2017 24

• OpenWrt:
Structurally, the
modules are highly
dependent on each
other. However, the
co-changes are only
among 7 modules

• OpenWrt is more

decoupled in

maintenance than

is suggested by its
structure.

Fine-grained Package: Co-change Relationship

SSRR 2017 November 8, 2017 25

• OpenWrt: we filter out co-
changes less than 10

• Only “linux” and
“firmware-utils” have co-
changes more than 10.

• Modules in OpenWrt are

almost perfectly

decoupled from each
other in maintenance!

Fine-grained Package: Co-change Relationship

SSRR 2017 November 8, 2017 26

MD PnP

• The system contains 13 layers

OpenWrt

• The system contains 8 layers

Modules based on Dependency Hierarchy

Each layer is formed by the actual dependency

hierarchy among files

SSRR 2017 November 8, 2017 27

MD PnP

• The system contains 13 layers

OpenWrt

• The system contains 8 layers

Modules based on Dependency Hierarchy

The layers could be used for sequential task

assignment

SSRR 2017 November 8, 2017 28

MD PnP OpenWrt

Modules based on Dependency Hierarchy

Reality: everything change with everything else!

SSRR 2017 November 8, 2017 29

MD PnP OpenWrt

Modules based on Dependency Hierarchy

Co-changes above 10 : still everything changes with

almost everything else!

SSRR 2017 November 8, 2017 30

MD PnP

• 7 main contributors
• The “King” is the main contributor

and his module decouples other
contributors’ modules

Open Wrt

• 21 main contributes
• Everyone’s work is related to

everyone else’s.

Modular Structure based on Organizational
Structure

SSRR 2017 November 8, 2017 31

MD PnP Open Wrt

Modular Structure based on Organizational
Structure

OpenWrt looks far more complicated compared to MD

PnP!

SSRR 2017 November 8, 2017 32

MD PnP Open Wrt

Modular Structure based on Organizational
Structure

• Pros: 87% inner module changes,
12% cross module changes.

• Cons: King: 45% of files, but 77% of
changes

• Pros: Everyone contributes relatively
equally to the system.

• Cons: The modules are more
coupled with each other.

SSRR 2017 November 8, 2017 33

Modular Structure based on Organizational
Structure

• We filter out co-change relationships whose weight is less than 10

• Only 9 contributors’ modules have co-change weights of 10 or
more

SSRR 2017 November 8, 2017 34

Modular Structure based on Organizational
Structure

• Vendor lock-in is most likely to happen among these nine

modules!

SSRR 2017 November 8, 2017 35

Agenda

• Introduction

• Module decomposer

―Package view (development view)

―Dependency hierarchy view (sequential work allocation)

―Organizational view (vendor-lock in)

• Domain concept learner

• Next Steps

SSRR 2017 November 8, 2017 36

Domain Concept Learner Overview

• Problem: Each cyber-physical system may use different keywords
to identify hardware related components and concepts

• Objective: extract semantic relationships among keywords to
identify system specific terms and concepts

• Accomplishing this objective will enable us to:

1. Extract hardware related terms for identifying hardware
related modularity violations

2. Construct a view of the system based on the semantic structure
to find additional candidate modularity violations

3. Enable assisted analysis of new cyber-physical systems through
machine learning

SSRR 2017 November 8, 2017 37

Approach

• Use natural language processing (NLP) techniques to analyze
project documentation and organize keywords into topics

• Extract hardware related terms for use in co-change analysis

• Identify relationships among topic groups to extract a semantic
structure for the project

• Map the semantic structure to the software architecture to
identify potential modularity violations

• To evaluate the efficacy of the approach, OpenWRT will serve
as the training set for any developed algorithms, and MDPnP
will serve as the test set

SSRR 2017 November 8, 2017 38

Progress to Date

• Scraped OpenWRT project documentation from project wiki
pages as well as github change logs to serve as the corpus

• Applied LDA and related algorithms to the corpus but results
were not useful

• Applied word2vec skip-gram algorithm to corpus and obtained
a useful model

• Extracted hardware related terms using cosine distance metrics
applied to the fit word2vec model

• Applied agglomerative clustering to the word2vec model but
did not obtain useful clusters

• Applied k-means clustering to the word2vec model and
obtained useful clusters of terms by concept

SSRR 2017 November 8, 2017 39

OpenWRT Data

• After pre-processing:

• 2,318,673 raw words in the corpus

• 409,283 sentences in the corpus

• 28,135 unique word types in the vocabulary

• After applying minimum count of 5 occurrences:

• 11,952 unique word types in the vocabulary

• 2,289,887 words remain in the corpus

SSRR 2017 November 8, 2017 40

Word2vec

• Word2vec is shallow neural network that attempts to model
the probability that words will occur near each other in text

• A consequence of the training process is that each word in the
vocabulary is represented by multi-dimensional vector

• Applying a distance metric to a pair of vectors can quantify the
degree of similarity among the words that the vectors represent

SSRR 2017 November 8, 2017 41

Fit word2vec Model

t-SNE plot of the trained word2vec model with 500 hidden nodes using cosine distance

SSRR 2017 November 8, 2017 42

Extracting Hardware Related Terms

• Comparisons of the trained vectors enable us to “query” the
model for keywords of interest

• We can include both positive and negative words in the query

• For example:

word_distances = model.most_similar(positive = ["hardware", "device","router",
"radio", "wifi", "mips", "ramips", "mtd", "broadcom", "routerboot", "router",
"firmware", "bluetooth", "energy", "power", "soc", "chip"], negative = ["api",
"call", "class", "code", "readability", "style", "data", "function", "gdb",
"infinite", "loop" , "bug" , "json", "kernel", "leak", "method", "null",
"parameter", "plugin", "process", "recursive", "script", "string", "syscall",
"variable"], topn = False)

SSRR 2017 November 8, 2017 43

Extracting Hardware Related Terms

 board cf plus verdex

 profile ep93xx fi qca9563

 at91 zyxel rt5350 dk01

 ehci techdata udc agl300nh

 netgear compex ar9331 k330

 linksys mt7620a imx23 305x

 cns21xx omap35xx routerboard rb750up

 mikrotik qualcomm wi u7623

 rt3883 pro extender ls1043ardb

 rt288x ata amcc aga

 ppc40x openmesh meraki awake

 apm821xx gumstix dlan sc16is752

 pxa alice pirelli mx60w

 buffalo huawei gate mt7621a

 avila rb1xx devolo 7links

Top 60 words from query

SSRR 2017 November 8, 2017 44

Topic Clustering

• Clustering has resulted in reasonably coherent groupings

processors

and chipsets communications

project

infrastructure

software

management

code

organization storage

0 1 2 3 4 5

bcm2708 patch project package config mtd

orion generic guide utils base data

ppc40x kernel http crypto etc flash

mx kmod documentation ltq sh nand

timer pending lede atm lib info

pxa backport welcome dsl init partition

smp f wiki yaffs2 ipkg size

asoc hack org iwinfo uci nvram

cf v4 forum swconfig diag block

pi fo downloads fw preinit chip

jz4740 filter git ar6000 conf map

fsl optional com libpcap hotplug m25p80

compatible ledtrig binding libnl share rootfs

cpufreq reduce release tiny bin squashfs

ipq8064 increase doc e100boot sbin mount

ipq4019 sched www app usr write

arm64 netdev cortex vdsl skeleton parser

Example k-means clustering run for 30 clusters, normalized vectors

SSRR 2017 November 8, 2017 45

Refining the Clusters

• We are currently running parametric experiments and testing
various clustering approaches to refine the results

• We are also mapping the clusters to the software architecture

2 3 4 5 6 7

linux image file package add patch

target support default openwrt fix es-3

generic device use makefile update es-4

es-2 board user config build -default

ar71xx usb data network remove pending-4

ramips driver option base-files version international

brcm63xx profiles configuration etc make submitting

lantiq platform interface src change alike

brcm2708 switch http lib documentation pagesource

adm5120 ethernet server control upgrade attribution-share

brcm47xx wifi set ipkg content lzma-loader

mtd phy port net lede swconfig

ath79 code rule modules page backport-4

ixp4xx register using services missing coldfire

ipq806x gpio start init new map

s3c24xx wireless address scripts enable uml

SSRR 2017 November 8, 2017 46

Extracting the Semantic Structure

• We are tracing how words are grouped as the number of clusters
is varied in order to extract relationships among them

SSRR 2017 November 8, 2017 47

Agenda

• Introduction

• Module decomposer

―Package view (development view)

―Dependency hierarchy view (sequential work allocation)

―Organizational view (vendor-lock in)

• Domain concept learner

• Next Steps

SSRR 2017 November 8, 2017 48

Next Steps

 Short-term:

o Cross reference learned domain concepts to modules.

o Identify and measure modularity violations at different
levels of decomposition for different stakeholders.

o Build proof-of-concept demonstrator.

 Long-term:

o Prioritize and visualize modularity violations for
restructuring decision-making for stakeholders.

o Provide in-depth interpretation of the root causes of
modularity violations for restructuring insights.

SSRR 2018 November 8, 2018

Thank You!

Lu Xiao;
lxiao6@stevens.edu
Michael Pennock;
mpennock@stevens.edu

School of Systems and Enterprises
Stevens Institute of Technology

mailto:lxiao6@stevens.edu
mailto:mpennock@stevens.edu

