

RT16 Experience Accelerator: Year 1 Summary

By Jon Wade & the RT16 Team

Annual SERC Research Review
October 5-6, 2011
University of Maryland
Marriott Inn and Convention Center
Hyattsville, MD

www.sercuarc.org

Experience Accelerator Team

Content:

Alice Squires – Stevens

Tools:

Jon Wade, PI – Stevens

Technology:

- Doug Bodner Georgia Tech
- George Kamberov Stevens
- Pradeep Jawahar Georgia Tech
- Brent Cox Stevens
- Vinnie Simonetti Stevens
- Remzi Mungan Purdue

Evaluation:

- Bill Watson, CoPI Purdue
- Pete Dominick Stevens
- Dick Reilly Stevens

SMEs:

- Rick Abell
- John Griffin
- John McKeown

Overview

- Motivation
- Research Activities
 - Identify critical SE competencies and maturation points
 - Create appropriate learning experiences
 - Define open architecture & technologies
 - Develop & evaluate prototype
- Future Work

Workforce Demographics

What's More Effective?

Transforming SE Development

We postulate that the new paradigm must be:

- Integrated: Provides an integration point of multi-disciplinary skills and a wide range of Systems Engineering knowledge in a setting that recreates the essential characteristics of the practicing environment.
- **Experience Based**: Providing accelerated learning opportunities through experience-based interactive sessions.
- Agile: Allowing for quality, timely development of course material that is most appropriate for the target students.
- Time/Cost Efficient: Compressing multi-year lifecycle experiences into a much shorter period of time.

Hypothesis

By using technology we can create a simulation that will put the learner in an experiential, emotional state and effectively compress time and greatly accelerate the learning of a systems engineer faster than would occur naturally on the job.

Experience Accelerator Goals

To build insights and "wisdom" and hone decision making skills by:

- Creating a "safe", but realistic environment for decision making
- Exposing the participants to the "right" scenarios and problems
- Providing rapid feedback by accelerating time and experiencing the downstream consequences of the decisions made

Research Activities

- Identify critical SE competencies and maturation points
- Create appropriate learning experiences
- Define open architecture & technologies
- Develop & evaluate prototype

Taxonomy of SE Competencies

Recommended Approach*

	Proficiency Level					
Situation Complexity	None or Aware only	Apply with guidance	Apply	Manage or Lead	Advance state of art	
Exceptionally complex					7	
Considerably Complex				1		
Complex			Ì.			
Somewhat complex		/				
Simple	\					

^{*}The user can progress - over time - to increasingly more complex situations (by level) in the simulation and from beginning to advanced stages of capability and understanding in each situational context (level).

Targeted Learning

Competencies:

- •BP8 Problem Solving and Recovery Approach
- •TM11 Product Integration

Aha's:

•2.3 – Cutting corners to make short term milestones rather than focusing on end date

Research Activities

- Identify critical SE competencies and maturation points
- Create appropriate learning experiences
- Define open architecture & technologies
- Develop & evaluate prototype

Learning Process

(Concrete Experience)

(Abstract Conceptualization)

The Experience: A Day in the Life of a PSE

UAV System:

- Airframe and Propulsion
- Command and Control
- Ground Support

UAV KPMs:

- Schedule
- Quality
- Range
- Cost
- Sensing*
- Crew size*

* Potential Phase 2 work

Phases:

- EA Introduction
 - Phase 0: New Employee Orientation
- Experience Introduction
 - Phase 1: New Assignment Orientation
- Experience Body
 - Phase 2: Pre-integration system development -> CDR
 - Phase 3: Integration -> FRR
 - Phase 4: System Field Test -> PRR
 - Phase 5: Limited Production and Deployment -> ISR
 - Phase 6: Experience End
- Experience Conclusion
 - Phase 6: Reflection
- Each session = 1 day

Challenge/Landmines & Linkages

System	Challenge	Phase	Evidence	Situation	Desired Actions	Inputs to Simulation
						Change assignment of
	range too			weight during	RRE - focus resources on weight	labor within sub-
<i>S2</i>	short	P2	MRG	development is too high	reduction	system development
					ASP - reallocate weight from S2	
					to S1	Change weights
					FEC - reduce expectations for	
					range	Change range target
				drag is higher than		
	range too			expected in wind tunnel	RRE - focus resources on drag	Change assignment of
S1	short	P3	MRG	testing	reduction	labor in S1
				productivity lower than		
S1, S2	schedule	P2	MSC	expected	RAD - hire additional labor	Hire new personnel
				more changes had to be		
S2	schedule	P3	MSC	made than anticipated	scc	Change schedule target
"	Jerredare					Change seriedare target
					RAD - hire additional labor and	
60		02	1466	unexpected integration	purchase additional test articles/	
SO	schedule	P3	MSC	issues	equipment	
					RRE - focus on integration, get	
					help from other areas	
				range assets are not	Renegotiate range priorities	
SO SO	schedule	P4	MSC	available	(contact customer)	
				software defect rate is	RRE - focus resources on design/	Change labor
S2	quality	P2, P3	MQS	too high	code reviews	assignment

Research Activities

- Identify critical SE competencies and maturation points
- Create appropriate learning experiences
- Define open architecture & technologies
- Develop & evaluate prototype

Emphasis on Open System Architecture

Principles:

- 1. Establish an Enabling Environment
- 2. Employ Modular Design Principles
- 3. Designate Key interfaces
- 4. Use Open Standards
- 5. Certify Conformance

Benefits:

- Reduced development time and overall life-cycle cost
- Ability to technology as it evolves
- Commonality and reuse of components
- Increased ability to leverage commercial investment

The Experience Accelerator's emphasis on Open System
Architecture is coupled with strong preference for use Open Source
Software products for implementation wherever appropriate

The Prototype

Experience Accelerator Block Diagram

SYSTEMS ENGINEERING Multi-Threaded Java Server Architecture

Research Activities

- Identify critical SE competencies and maturation points
- Create appropriate learning experiences
- Define open architecture & technologies
- Develop & evaluate prototype

Prototype Feedback Loop

	Overall System
Schedule:	
Confidence Level to Achieve Program Schedule Goals	<h,m,l></h,m,l>
Actions to address issues:	
Nothing Required	0
Call in external audit team	0
Add senior/junior design staff	Sr⊜/Jr⊝
Add development equipment	0
Add facilities	0
Reduce capabilities	0
Anticipate schedule extension by xx months	<xx></xx>
<u> </u>	

Learner Recommendations

NPC Dialog

Project Impact

Future Work: Capabilities

- Assess and improve first-year prototype to stabilize operation and produce desired learning
- Expand first-year prototype with additional capabilities
 - Expand set of challenges and landmines
 - Include cost objectives
 - Enrich user profile and competencies addressed
 - Enhance simulated world features and character interaction
 - Add features to user desktop

Future Work: Productivity

- Improve content creation and development tools
 - Dialog authoring
 - —Artifact creation
 - Event descriptions and triggering
- Make Open Source Ready
 - Documentation
 - Source control and defect tracking
 - —Port to open development environment

Future Work: Evaluate Efficacy

- User Feedback
 - —Develop more detailed feedback linked to competency model
 - Create competency scores based upon simulation performance
 - —Create a Comprehensive Feedback Report that participants can save/download
- Outcomes assessment
 - Establish outcomes assessment plan
 - —User reactions
 - —Behavior change / performance improvement measures
- Development Planning
 - Provide Development goal setting and planning tools
 - Create a database of development suggestions

Questions?

Join the Experience Accelerator Team!

Contact for information:

Jon Wade, PI jon.wade@stevens.edu

or

Bill Watson, Co-Pl brwatson@purdue.edu