Key UMass Amherst

Resources for SERC
Collaboration

Leon J. Osterwell (ljo@cs.umass.edu)
Lori A. Clarke (clarke@cs.umass.edu)

Lab. For Adv. SW Engineering Research
(LASER http://laser.cs.umass.edu)

Presentation to SERC Research Review
Malvern, PA
October 16, 2009

Department of Computer Science

mailto:clarke@cs.umass.edu

Microprocess:
A “Horizonal Technology Cut”

Process Is a central iIssue In system

engineering

= Goal: systems that are fast, agile, safe, effective,...
= Approach: processes for

 Building, analyzing, using, evolving, training, ...
= Processes specify how systems are

* Developed, used, evolved, ...
* As collaborations of people, software, devices

* (Development) processes are used to build systems
* Better systems come from better processes

= (Usage) processes guide how systems are wielded
« Better processes exploit systems better

= System improvement from Process Improvement

Example: Agile System Evolution

= How to quickly, surely enhance deployed systems?

= Improve their:
o Speed, functionality, usability, robustness
e Quickly, correctly, reliably

= Requires processes for:.

e Coordinating development
* People, tools, management

e Assuring product qualities
e Deploying product
e Training users
= Requires being sure of these processes

A case In point--Coming up later In
this presentation

= Agile development (e.g. Scrum) can
e Speed systems to deployment
e Close system improvement loops fast

= But can it also
* Allow defects to creep in unnoticed?

* Render development vulnerable to poor developer
performance?

* Process Analysis:

e Can be used to identify single points of failure leading to
development hazards

* The basis for removing such defects
* Process Improvement => System improvement

Key UMass Capabillity:

Technology-Based Continuous Process Improvement

= Process Is a central issue In system engineering
e Collaboration of people, software, devices, etc.

* Process Improvement is a central goal

= UMass concepts, tools, and technologies support
process:

o Definition

* Analysis/evaluation

e Education
 Performance/execution/simulation
e Evolution

Our approach is based upon

MICROPROCESS
research

Process as Object

Outputs

Input Artifacts Artifacts
Effects on
the world
Resources:

,\F/ljgﬁglye Process Other Behaviors
Tools Money used
Time Time spent

Errors committed

assAmherst

Macro-Process Focus

/

Input Artifac

Outputs\

Artifacts
Effects on
the world

Resources:

,\Fjﬁﬁ,’g'ye Process Other Behaviorg
Tools Money used
Time Time spent

\ / Common approaches: Errors Commiy‘{
CMMI, 1SO 9000, Six Sigma

Micro-Process Focus

Outputs
Input Artifacts Artifacts

Effects on
the world
People

Process Other Behaviors
Money

Tools Money used
Time Time Spent

Needed approach: Define, analyze Errors committed
Automate, precise process definitions

Resources:

assAmherst

Bridging Micro- and Macro-

= Use details of process model to predict how
system attributes and behaviors are produced

= Suggest changes, predict their effects
= Validate changes before they are made

Each has interests in all of these
Each knows it needs the other’s approach

What we learn from analogies to

other disciplines (e.q. medicine)

= Macro- approach comes first
= Limited success in engineering
= Micro- approach/theory follows

= Facilitates more effective engineering
e Improved predictability
* Reduced uncertainty
« Greater cost effectiveness
« Better understanding of limitations
e Fewer surprises

We are here (?) ‘

Time for SERC to take the lead in showing how:

Microprocess technology can transform
System Engineering

The Microprocess Vision

= Define processes with a precisely defined
executable language

= Analyze processes for defects
e And fix them to improve them

= Execute, simulate the defined processes
e To provide user Guidance

= Use them as the basis for education and
workforce development

The Microprocess Vision

= Define processes with a precisely defined
executable language

= Analyze processes for defects
e And fix them to improve them

= Execute, simulate the defined processes
e To provide user Guidance

= Use them as the basis for education and
workforce development

Apply this to the many processes implied
In the SERC Research Strategy

Little-JIL process language features

* Blends proactive and reactive control
= Coordinates human and automated agents

« Without favoring either

= Emphasizes exception specification, management

= Facilities for abstraction, scoping, hierarchy

= Artifact flow, resource utilization integrated

= Concurrency, synchronization with message-passing
= Articulate specification of resources
= Semantics for aborting activities

= Pre/post condition constructs

= Facilities for human choice

There are
many more

Little-JIL: A Real Language with
Precise Semantics

= Process definition is a hierarchical decomposition

= Think of steps as procedure invocations

e They define scopes
 Copy and restore argument semantics

= Encourages use of abstraction
e Eg. subprocess reuse

Little-JIL: A Real Language with
Precise Semantics

= Process definition is a hierarchical decomposition

= Think of steps as procedure invocations

e They define scopes
 Copy and restore argument semantics

= Encourages use of abstraction
e Eg. subprocess reuse

A key feature in distinguishing this from
less formal languages (e.g. workflow)

“Step” Is the central Little-JIL abstraction

Interface Badge
(parameters, resources, agent)

|

Prerequisite Badge O Postrequisite Badge
— V TheStepNameA“—

Handlers
Substep sequencing
. eption type
Arti ct/
fldws

—

continuation

assAmherst

Top level of Little-JIL
Scrum process definition

Q
VDevelnp Prnductﬂ.&

B i e

VDD Pregame Phase-"‘i\- v Do Game Phase '& VDD Postgarme Phase&

T

V 5prﬁ:7I .&

Plan for Sprint

Hold Scrum

Top level of Little-JIL
Scrum process definition

Q
VDevelnp Prnductﬂ.&

O
Feganme Phase-"‘i\- v Do Game Phase '& VDD Postgarme Phase&

Top level of Little-JIL
Scrum process definition

Q
VDEUEMFI Prnductﬂ&

O

egame Phase& v Do Game Phase '& VDD Postgarme Phase&

Top level of Little-JIL
Scrum process definition

Q
VDEUEMFI Prnductﬂ&

O
v Do Game Phase -& VDD Postgame Phaseé

Pregame Phase.&.

Elaboration of “Execute Tasks” step

; E:{E:ute Tasks

: agent+

; E:rcecute Personal Tash:s

; Execute Pers-unal Task-"i\'-

/'K

V Execute Task .‘. ? Rework Task -”‘i\-

Execute Task

assAmherst

The Basis for Engineering

= Such definitions can then be the subjects for
sound analyses

= They can be executed
* To provide user guidance

= They can be support education and training
= They form the basis for disciplined improvement

Process Improvement Environment

Finite-State
Verification

Fault-Tree
Analysis

Discrete-Event
Simulation

Resource A‘ P | role-Bass

Specification Anal
And Management u ﬂ
H

assAmherst

Finite-State Verification

Process
Engineer

PROPEL
' Froperiy
Cittle-JIL Generator
Process Pr st

Lo roperiy

Definition — Property .

Representation

Process =LAVER
4 r_Jr ._":‘
System Model | ISR =ns
Ikeasoning

Translator

Engine

Property Holds on All Paths Property Does Not Hold:
Through the Model Counterexample

assAmherst

Finite State Verification of Properties
V teccerasis 2\

Process property. Task
must be reworked if the w

reVIEW faI|S VExecute Personal Tasks-"i\-

; Execute Persnnal Task-"i‘-

l
\‘Tf ExecutETask ‘. V RewnrkTask r’i“.

Execute Task

assAmherst

Using Propel to define property “Task
must be reworked If the review falls”

@ FewiewFailed

= (FeviewFailed,
TaskEewnarked)

FeviewFailed

TaskREeworked

= (FEeviewFailed, a(FEeviewFailed,
TaskEewarked) TaskREewarked)

assAmherst

Corresponding (Disciplined)
English Description of Property

FLAVERS-generated trace showing how
the property can be violated

— " mepExecute Tad 4]

Review Tas

— W Rework Tas

T e F R C LITE

Rl e
ReviewF ai d
RewiewF aill Nthrown

Suggesting a correction to the process-
technology-driven process Improvement

assAmherst

Fault Tree Analysis (FTA)

= A well accepted and widely practiced
hazard analysis technique

= Systematically identifies and reasons
about all possible events that could lead to
a given hazard

e Create fault tree for a hazard
* Analyze each fault tree

= Analysis results can be used to improve
the process => process improvement

Fault Tree Automatically generated

Hazard: Artifact
“sprintbacklog” from
“Sprint” Is wrong

Minimal Cut Sets Can Be Generated
Automatically

Minimal Cut Set | Size I
I[ReviewFailed thrown by "Execute Task™ "Execute Task™ produces wrong sprintbacklog 2
I[ReviewFailed thrown by "Execute Task™ productbacklog to "Sprint” is WRONG 2
"Plan for Sprint” produces wrong sprintbacklog lReviewFailed thrown by "Execute Task™ 2

"Execute Task” produces wrong sprintbacklog

assAmherst

Location of Single Point of Fallure

assAmherst

Discrete-Event Simulation

= Use the Little-JIL process models, combined
with a resource manager to drive discrete-
event simulation

o Evaluate alternative resource allocations
e More architects, maore programmers, or more testers

Little JIL Interpreter Architecture

Resource Parameter
Manager Manager
Who o ‘Outputs

Which step does i What s it
next? done to?
Step Agenda
Sequencer Manager
Agendas

S P g

Human Agents Non-Human Agents

Little JIL Simulator Architecture

Resource Parameter
Manager Manager
Who Outputs
Which step does i What is it
next? done to?
Step Agenda
Arrival
Distribution Sequencer Manager
Specificatio
Event Next
Arrivals Event
User Agendas

Events

Agent
Behaviors
Specification

Non-Simulated Simulated

Simulated Human Agents Non-Human Adents

Life Cycle Process Engineering : An
engineering discipline applied to the domain of processes

= [ntegrated approach to process
 Definition

Analysis

Simulation

Execution

Education

Improvement

Toolset Status

= Little-JIL language 1.5 is defined

= LASER currently distributes
* Visual JIL graphical editor
* Propel property specification system
 FLAVERS finite state verification system
« Fault tree generator and analyzers

= Working, but not distributed yet
e Juliette runtime execution system
« ROMEOQO resource manager
e JSim finite state simulation system

Toolset Integrated through Eclipse

7 Little-JIL Analysis Navigator 52 =g rm in- ni ion = B8 || E propertie 52 .] Document| 5
= <f;> = ~@ Palette [= & I=:€>
b == Blood Transfusion Analysis o ES Select Property Walue
» 1= Copy of Blood Transfusion Analysis Vperfurm in-patient bloed transfusiun/zz 1 Marquee
» =2 Copy of Election L4 Mara
» 1= Copy of Election Fault Tree =3 Sequential
Y'[b‘JCOpv of Simplified Blood Transfusion parallel
= Paralle
> @t fUsersfljo/Desktop/eclipse/plugins/laser.littlejil
HH (default package) == Choice
b % bin ‘/_\ O -: ¥ Try
v BT Process.ljx N7
obtain patient's blood 2 i
v [y Diagrams p typ ; pick up blood from blood bank.& & Leaf -
perform in-patient blood transfusion _ R Reference O Interfaces §3
» Process Fragments _—— Add » De
» = Exported Step Names / Substep
rl Connector
= Imported Step Names
» H exception Reaction
4) Connector
b =0, JRE System Library JWM 1.5.0 (MacOS X Default)] V ' ‘& v ‘/_\
J) contact lab for patient's blood type test patient's blood type Handler
b == Election
) Connector
b =5 Election Fault Tree _ _)
h'[b‘JSimpliﬁed Blood Transfusion ./ Simple Handler 7 Bindings (E Console 3 =
[Past-It Mo consoles to display at this time.
4 Bl - Fv
(= =) ROl =) RIC

A SERC-relevant Application:
Adile/Adaptive Software Development

= Applying this approach to processes for
agile/adaptive system development

= Some examples can be drawn from Agile Methods,
Extreme Programming

= Case In point: Scrum-oriented development
e Define Scrum

* Analyze Scrum
 |dentify and fix weaknesses
e Train and educate

* Provide automated guidance in doing Scrum

Some Research Areas

= \What semantic features should a microprocess
definition language have?

= How to specify its semantics?

= \What analysis approaches should be explored?
* What can be learned from each

= \What Is the architecture of a microprocess
execution system?
* \What components?
 How integrated?

= Software artifact provenance
e What is needed?
 How to provide it?

Questions
and
Discussion

Backup
Slides

Four parts to a Little-JIL Process

= Coordination diagram
= Artifact space

= Resource repository
= Agents

An Articulate Process Can Help

Where does output go?
[Requirementsl | What to do when reviews fail?

4 :
[High-Level What causes this rework?

What portion of

...... / Low-Level activity should be
Design done?

High-Level Process

O
R Nt il Y= Ta=N BT=117=1 faTaTa aT=Ya | A —

Requirements Coding

High-Level Design Low-Level Design

Requirements

Reqguirements
Process
Emphasizing
Rework)

Develop Rgmt Element

@ ~Rgmt OK —

@Declare and Define Rgmt
A Rgmt OK Develop Rgmt Element

2 @ -

ii iDecIare Rgmt Element @Define Rgmt Element

. In/Out: Rgmt Spec, {Rgmt Elt}
Requirements

+

In/Out: Rgmt Spec, Rgmt History
. Out: {Rgmt Elt} <- {Rgmt EIt} U Rgmt Elt)

Develop Rgmt Element

In/Out: Rgmt Spec, Rgmt History ~Rgmt OK ——
Out: Rgmt Elt In: Rgmt Spec,
. (Rgmt History, Rgmt Rpt)

Declare and Define Rgmt

Rgmt OK Develop Rgmt Element
In: Rgmt Elt
Declare Rgmt Element Define Rgmt Element

erst

©
High-Level Design

@ Declare and Define HLDesign Elements

AHLDesign OK

Declare HLDesign Elements

@ Declare HLDesign Element @Define HLDesign Elements

Coding

Define Module Interfaces

A

Interface
OK

Define A Module Interface

assAmherst

~Rgmts OK

Requirements

~FMhRQ OK

R “High-Tevel Design

ow-Level Design

Coding

~ A RgmNOK

Code All Modules €°de
OK

.

Develop Rgmt
Element

FSV Using Propel and FLAVERS

[Little-JIL Analysis Navigator 53

T perform in-patient b

I:‘EV Failed Example - Blo

a -
(m,—. Process Information

2y Conclusive Bxample - 82 = O

¥ =% Blood Transfusion Analysis
u;—-. Process Information
v % Property Settings

#2y Conclusive Example

£y Failed Example
P =% Copy of Blood Transfusion Analysis
PBCOW of Election
» = Copy of Election Fault Tree
I[;_'—‘,J-Copy of Simplified Blood Transfusion
> IU‘J Election
b [=*Election Fault Tree
| 2 BSimpliﬁed Blood Transfusion

Specify Settings for Property

Name: | Conclusive Example

Overview | Property | Event Bindings

Constraints\l Translator Sertingﬂ Werifier Settingﬂ

i X

¥ (@ obtain patient's blood type

¥ (3 perform transfusion

ﬁ?"obtain patient's blood type” is COMPLETED

7 "perform transfusion” is STARTED

Save) [Run

) Show Violation Trace -

] Propertie 33 =] pocument| = B
=

Property Malue .
O Interfaces 53 = O
Add ~ Delete

=] Bindings | &l Console 53 = B

<terminated> /System/Library/Framewor
B X % |G GEEE =3
F4-

Alphabet refining the Tfg... -

Structurally refining the Tfg..
Varigble refining the Tfg...

Building the analysis problem..
Building the task automata...
F
.

Running verifier...
max zdd nodes: 26
The property holds.
Time: 3870

No violation found.

= RIC

	Key UMass Amherst Resources for SERC Collaboration
	Microprocess:� A “Horizonal Technology Cut”
	Process is a central issue in system engineering
	Example: Agile System Evolution
	A case in point--Coming up later in this presentation
	Key UMass Capability:�Technology-Based Continuous Process Improvement
	Our approach is based upon ��MICROPROCESS�research
	Process as Object
	Macro-Process Focus
	Micro-Process Focus
	Bridging Micro- and Macro-
	What we learn from analogies to�other disciplines (e.g. medicine)
	Time for SERC to take the lead in showing how: �
	The Microprocess Vision
	The Microprocess Vision
	Little-JIL process language features
	Little-JIL: A Real Language with�Precise Semantics
	Little-JIL: A Real Language with �Precise Semantics
	“Step” is the central Little-JIL abstraction
	Top level of Little-JIL�Scrum process definition
	Top level of Little-JIL�Scrum process definition
	Top level of Little-JIL�Scrum process definition
	Top level of Little-JIL�Scrum process definition
	Elaboration of “Execute Tasks” step
	The Basis for Engineering
	A Continuous Process Improvement Environment
	Finite-State Verification
	Finite State Verification of Properties
	Using Propel to define property “Task must be reworked if the review fails”
	Corresponding (Disciplined) English Description of Property
	FLAVERS-generated trace showing how the property can be violated
	Fault Tree Analysis (FTA)
	Fault Tree Automatically generated from Little-JIL
	Minimal Cut Sets Can Be Generated Automatically
	Location of Single Point of Failure
	Discrete-Event Simulation
	Little JIL Interpreter Architecture
	Little JIL Simulator Architecture
	Life Cycle Process Engineering : An �engineering discipline applied to the domain of processes
	Toolset Status
	Toolset Integrated through Eclipse
	A SERC-relevant Application:�Agile/Adaptive Software Development
	Some Research Areas
	Questions�and�Discussion
	Backup �Slides
	Four parts to a Little-JIL Process
	An Articulate Process Can Help Answer Questions Like These
	High-Level Process
	Requirements �Process �Emphasizing �Rework
	Slide Number 50
	Slide Number 51
	Slide Number 52
	FSV Using Propel and FLAVERS

