

Resilience Analytics with Application to Power Grid of Developing Region

of Engineers.

INIVERSITY

SYSTEMS ENGINEERING RESEARCH CENTER

Heimir Thorisson¹, James H. Lambert¹, John J. Cardenas², Igor Linkov³

¹University of Virginia, ²US Agency for International Development, ³US Army Corps of Engineers

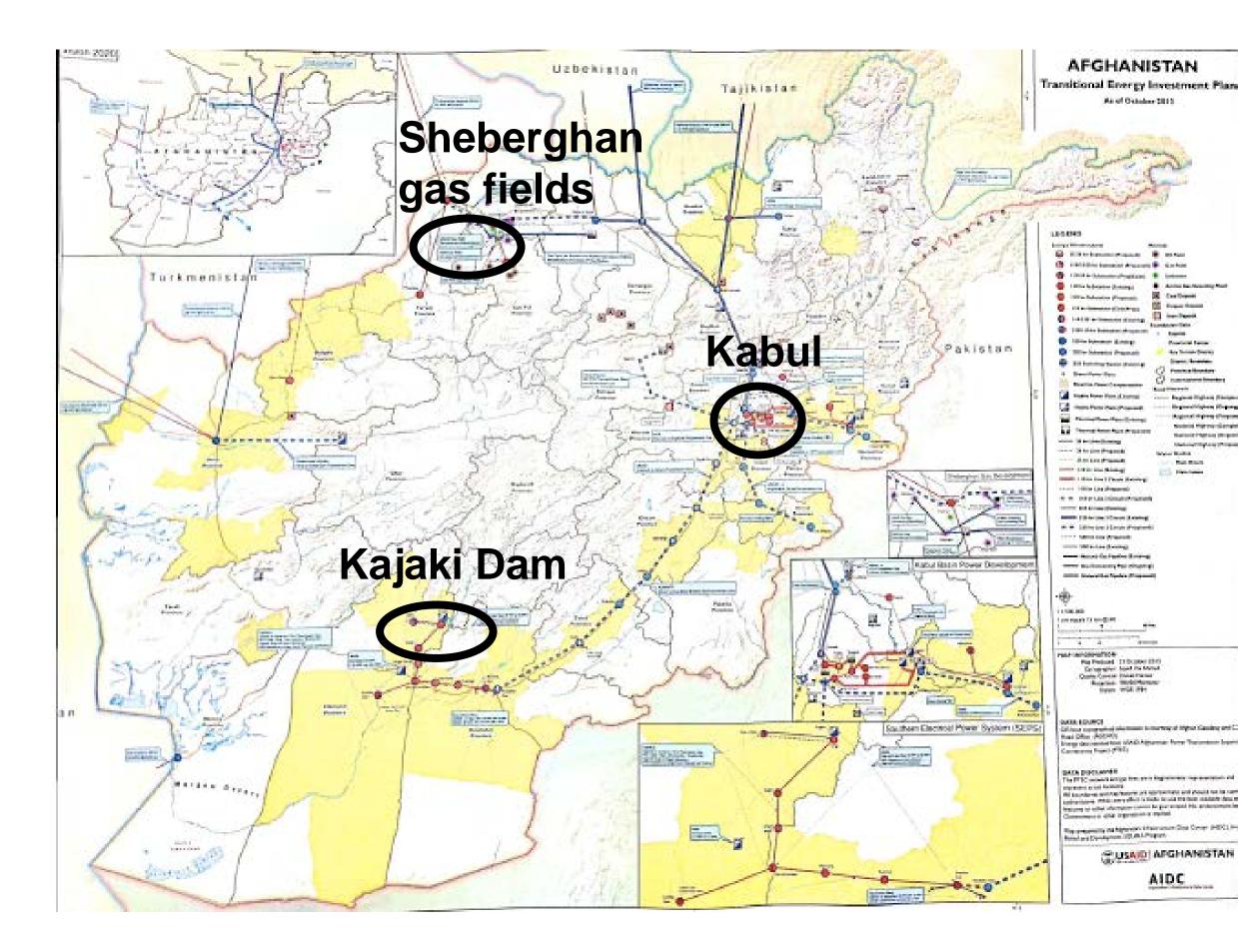
Research Task / Overview

Identify, monitor, and address the emergent and future conditions that most disrupt a \$200m capacity expansion of the power grid of Afghanistan, a ten-year effort of systems engineering with several ministries of Afghanistan, Combined Security Transition Command - Afghanistan, US Agency for International Development, Asian Development Bank, and a half-dozen donor nations.

Goals & Objectives

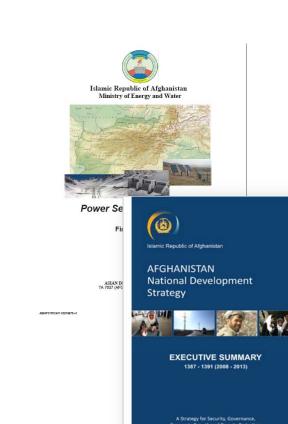
Identifying planned and proposed *initiatives* contributing to a safe and reliable power grid in Afghanistan.

Describing what overarching stakeholder success criteria these initiatives are meeting.


Establishing the prioritization of the initiatives in terms of their coverage of the goals.

Delineating scenarios that most affect the prioritization of initiatives enhancing the expansion of the power grid in

Data & Analysis


Data inputs sourced from various agencies, e.g. Combined Security **Transition Command - Afghanistan** (CSTC-A) and US Agency for International Development.

Total of 39 initiatives, 6 risk scenarios and 2 sets of success criteria

the coverage of criteria by

importance

↑ - Criterion increases in

- Critarian decreases in

Assessing

initiatives

• - Significant coverage • - Marginal coverage

Sample of initiatives

Sample Justice Sheberghan gas development Arghundy to Kandahar transmission line Salang Tunnel substation Kabul power system rehabilitation Kajaki Dam Unit 2 CASA-1000 **TUTAP** Kabul to Pakistan transmission line **Turkmenistan interconnection Phase 1**

Ю Ю

Importance adjustment of criteria for scenarios

criteria

of

Devel

ector

()

Private

Governa

D

 \mathbf{O}

0

Energy

0

0

Afghanistan.

support

Reliability

Initiatives

Initiatives

lines

transmission

generation

substations

assistance

management

include

cost-

effectiveness

energy security

importance		ity	(D)	nanc	Y	te Se
Sample of risk scenarios	Sam	Secur	Justic	Governa	Energy	Private
Mismanaged funds				\uparrow		
Insufficient power generation					\uparrow	
Disruption of electricity import					\uparrow	
High-level government corruption			\uparrow	\uparrow		
Insurgency damage					\checkmark	


ria

crite

of



Sensitivity analysis of initiative ranking. Height and direction of whiskers indicate threats and opportunities

Initiatives and risk scenarios for further investigation

Future Research

Kajaki Dam, essential for hydropower generation and industrial development

Monitoring and buy-down of sources of risk through the \$200M, 10-year investment lifecycle

- Support Asian Development Bank as the agent for resilience/risk management
- Extend method to other development tasks such as transportation, communications, humanitarian aid, etc.

Contacts/References

Key insight

National government criteria

Independent auditors criteria

Most resilient highly prioritized initiatives within criteria set	x ₃₉ : Contracting and enforcement mechanisms	x ₃₉ : Contracting and enforcement mechanisms			
Least resilient highly	x ₅ : Kajaki Dam Unit 2, x ₂₃ : Gereshk	x ₁₆ : Tranche 4 preparation, x ₂₂ : DABS			
prioritized initatives	hydropower plant rehabilitation and	management assistance, x ₂₆ : Tranche 3			
within criteria set	upgrade	implementation and supervision con,			
Most disruptive stressor	s ₂ : Unsatisfactory local governance	s ₂ : Unsatisfactory local governance			
Least disruptive stressor	s ₁ : Insufficient power supply	s ₁ : Insufficient power supply			
Most resilient initiative across criteria sets	x ₂₀ : Kabul distribution network, x ₃₉ : Contracting and enforcement mechanisms				
Least resilient	x ₃ : Salang Tunnel substation, x ₁₈ : Chimtala to South West transmission line, x ₂₉ : Andkhoy				
initiative across	and Sheberghan substations, x_{30} : Mazar Sharif substation expansion, x_{32} : Pul-e-Alam and				
criteria sets	Gardez substation equipment				

Support for this effort was provided by the US Army Corps of Engineers, US Department of State, and the National Science Foundation grant 1541165 "CRISP Type 2: Collaborative Research: Resilience Analytics: A Data-Driven Approach for Enhanced Interdependent Network Resilience"

Heimir Thorisson ht3jt@virginia.edu +1 206-451-3346 Prof. James H. Lambert lambert@virginia.edu +1 434-531-4529

Thorisson, H., Lambert, J.H., Cardenas, J., Linkov, I. (2016). "Resilience Analytics with Application to Power Grid in a Developing Region". Wiley journal *Risk Analysis*. DOI: 10.1111/risa.12711

Department of Systems & Information Engineering Commonwealth Center for Advanced Logistics Systems University of Virginia, USA

SERC Doctoral Student Forum, November 16, 2016