

MODEL-INTEGRATED DESIGN IN SOFTWARE, SYSTEMS AND CONTROL ENGINEERING

Janos Sztipanovits ISIS, Vanderbilt University

> SERC Workshop October 5, 2011

Model-Based Design Tools

Domain Specific Design Automation Environments:

- Automotive
- Avionics
- Sensors...

Tools:

- Modeling
- Analysis
- Verification
- Synthesis

Challenges:

- Cost
- Benefit only narrow domains
- Island of Automation

Key Idea: Use models in domain-specific design flows and ensure that final design models are rich enough to enable production of artifacts with sufficiently predictable properties. **Impact:** significant productivity increase in design technology

Metaprogrammable Design Tools

Domain Specific Design Automation Environments:

- Automotive
- Avionics
- Sensors...

Metaprogrammable Tool Infrastructure

- Model Building
- Model Transf.
- Model Mgmt.
- Tool Integration

Explicit Semantic Foundation

- Structural
- Behavioral

Key Idea: Ensure reuse of high-value tools in domain-specific design flows by introducing a metaprogrammable tool infrastructure. **VU-ISIS implementation:** Model Integrated Computing (MIC) tool suite (*http://repo.isis.vanderbilt.edu/downloads*/)

- Physical
 - Functional: implements some function in the design
 - Interconnect: acts as the facilitators for physical interactions

- Cyber
 - Computation and communication that implements some function
 - Requires a physical platform to run/to communicate

- Cyber-Physical
 - Physical with deeply embedded computing and communication

CPS Design Flow Requires Model Integration

Domain Specific Modeling Languages

Physical components are involved in multiple physical interactions (multiphysics)

Source of resilience: explicit modeling of multi-physics interactions.

Model Integration Challenge: Implementation Layers

Source of resilience: systems science principles for decoupling across design layers (such as passive dynamics to decouple stability from implementation induced time-varying delays

Impact: Open Language Engineering Environment \rightarrow Adaptability of Process/Design Flow \rightarrow Accommodate New Tools/Frameworks , Accommodate New Languages

Use Case 2: "C2 Wind Tunnel"

Issues to be studied experimentally:

Distributed Command and Control

- Synchronization and coordination
- Distributed dynamic decision making
- Network effects

Information Sharing

- Shared situation awareness
- Common Operation Picture (COP)

AFOSR PRET Program

Network effects

Advanced Cooperative Control

- Cooperative search algorithms

Heterogeneous Simulation Integration

How can we integrate the models? How can we integrate the simulated heterogeneous system components? How can we integrate the simulation engines?

Network Architecture

Model IntegrationArchitecture in C2WT

Simulation Integration Architecture in C2WT

https://wiki.isis.vanderbilt.edu/OpenC2WT

Example: Simulink model integration (Vehicle dynamics)

Experiments: Impact of Cyber Attacks

Network attack:

- A sub-network with hundreds of zombie nodes attacks a critical router on the main network.
- Flood attack on udp, tcp or ping

Summary

Questions:

- What are challenging systems application domains? Heterogeneous SoS domains (like CPS and C2).
- How does practice diverge from theory, and how do we connect? Precise compositionality is hard to achieve in heterogeneous systems, still, we need predictability. Need systems science principles for simplifying interactions and dependences (decoupling).
- Where are relevant technologies to be found? In cross-disciplinary interactions. E.g. scalability in embedded software verification may require tradeoffs in systems dynamics.
- What would be the most critical tools and products? Component-based and model-based design approaches and tools are and will be increasingly essential.

Example: Architecture Modeling

Sublanguage / Capability	Formalism, Language Constructs, Examples		Usage
Architecture Modeling	Hierarchical Module Interconnect - Components - Interfaces - Interconnects - Parameters - Properties	Image: series	Systems Architect - Explore Design Space - Derive Candidate Designs
Design Space Modeling	Hierarchically Layered Parametric Alternatives - Alternatives/ Options - Parameters - Constraints	Image: Component Component Company (Company	Systems Architect - Define Design Space - Define Constraint

Example: Dynamics Modeling

Example: Physical Structure and Manufacturing Modeling

