

Applied Research Laboratory The Pennsylvania State University

Design as a Sequential Decision Process

Dr. Michael Yukish Research Associate Applied Research Laboratory at Penn State University may106@arl.psu.edu Simon Miller Doctoral Candidate Applied Research Laboratory at Penn State University may106@arl.psu.edu

Dec 3, 2015

- PSU has developed and evolved a preliminary Sequential Decision Framework for Model-Based Design that provides two key contributions:
 - A framework for linking models into a chain of increasing detail
 - An approach for determining an optimal sequential model chain
- Approach is being brought to bear on a number of problems/projects
 - UAV design
 - Rotorcraft NextGenDesign tool development
 - Army investment portfolio management
 - NSF Resilient Buildings Project
- For each, similar steps...
 - Identifying the trade space
 - Identifying the models used in the design process, with a focus on evolving levels detail
 - Looking to build initial test case model chains to support a design process
 - Use the problem to drive extensions to the framework
 - Understanding how the framework changes modeling

Design as a sequential decision process

Problem Framing

- Preferences are constructed during the process
 - Different strategies used at different times
 - Noncompensatory versus compensatory
 - Payne et al, (Psychology)
 - Balling (Design engineering)
- Choice is a sequential process of reducing the size of sets and increasing detail
 - Universal, consideration(s) and choice sets
 - Shocker (Marketing)
- Conceptual design is a Sequential Decision Process
 - Customer and provider both gain knowledge throughout the process
 - Defer commitment to best use knowledge
 - Explicitly acknowledge it
 - Singer, Doerry (Set-based Design...Naval Arch)
 - Frye (Pugh Controlled Convergence...Engineering Design)
 - ARL/Penn State
- How decision posed significantly affects choice
 - Prospect theory, framing effects
 - Kahneman, Tversky

Many potential paths through the design/modeling process

- Lots of models to potentially use
- Low fidelity employed initially, help focus effort
 - models provide rapid feedback at reduced cost
- As a design progresses, the model fidelity increases
 - More accuracy asymptotically approaches reality
 - Cost increases superlinearly
 - Higher fidelity = more inputs and outputs and more variable interactions
- Space to be considered decreases in breadth
- Questions
 - how should models link together?
 - What is the "best" modeling path?

- Assume a *detailed* and a *conceptual* model
 - Detailed (high fidelity): $v=g_d(x,y)$
 - Conceptual (low fidelity): $v=g_c(x)$
- Goal is to
 - Find x^* and y^* that minimize v
 - Use the cheaper concept model to cull the space first
- Define g_c to return bounds on detailed model

An example problem: cantilevered beam

1

- 1D FEA of a Cantilevered Beam with 1
 - Inputs: root and tip radii of the conical beau
 - Outputs: mass, tip displacement
- Formulation:
 - Single Objective: $\min_{X} (0.2 \text{ mass} + 0.8 \delta_{tip})$
 - Multi-Objective: $\min_X (mass, \delta_{tip})$
- Model Fidelity = #finite elements

Optimal Modeling Policies

- Discriminatory power approaches the analytic result asymptotically
 - SO yields 1 solution
 - MO yields 327 alternatives

• SO Formulation:

 $P_{500} = \{2, 4, 13, 33, 62, 500\}$

100-fold reduction in cost

- MO Formulation: $P_{500} = \{6, 49, 188, 500\}$
 - 4-fold reduction in cost

- Sequential model
 - Neatly aligns with set-based design
 - Decision-makers already implicitly make these decisions
 - Attempting to place formalism on the process
- Concept-Detailed Modeling Connection
 - Key piece to the sequential model process
 - Building good bounding models requires understanding of the physics of the problem
 - The value function plays a core role
 - Must trace bounds to values
 - Multiple objectives greatly reduces discriminatory power of models
- Broadly Applicable, e.g.
 - Equations that can be discretized
 - Cost modeling strategies
 - Rapid heuristics solvers to NP-hard problems
 - Time step simulations