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Summary

• PSU has developed and evolved a preliminary Sequential Decision 
Framework for Model-Based Design that provides two key 
contributions:

• A framework for linking models into a chain of increasing detail

• An approach for determining an optimal sequential model chain

• Approach is being brought to bear on a number of problems/projects
• UAV design

• Rotorcraft NextGenDesign tool development

• Army investment portfolio management

• NSF Resilient Buildings Project

• For each, similar steps…
• Identifying the trade space

• Identifying the models used in the design process, with a focus on evolving levels 
detail

• Looking to build initial test case model chains to support a design process

• Use the problem to drive extensions to the framework

• Understanding how the framework changes modeling
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Problem Framing
• Preferences are constructed during the 

process
– Different strategies used at different times

– Noncompensatory versus compensatory
• Payne et al, (Psychology)

• Balling (Design engineering)

• Choice is a sequential process of reducing the 
size of sets and increasing detail

– Universal, consideration(s) and choice sets

– Shocker (Marketing)

• Conceptual design is a Sequential Decision 
Process

– Customer and provider both gain knowledge 
throughout the process

– Defer commitment to best use knowledge

– Explicitly acknowledge it
• Singer, Doerry (Set-based Design…Naval 

Arch)

• Frye (Pugh Controlled 
Convergence…Engineering Design)

• ARL/Penn State

• How decision posed significantly affects choice
– Prospect theory, framing effects

• Kahneman, Tversky
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Many potential paths through the 

design/modeling process

• Lots of models to potentially use

• Low fidelity employed initially, help focus effort
– models provide rapid feedback at reduced cost

• As a design progresses, the model fidelity increases
– More accuracy – asymptotically approaches reality

– Cost increases superlinearly

– Higher fidelity = more inputs and outputs and more variable interactions

• Space to be considered decreases in breadth

• Questions
– how should models link together?

– What is the “best” modeling path?
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Formal Model of Connection

• Assume a detailed and a conceptual model 
– Detailed (high fidelity):      v=gd(x,y)

– Conceptual (low fidelity):  v=gc(x)

• Goal is to
– Find x* and y* that minimize v

– Use the cheaper concept model to cull the space first

• Define gc to return bounds on detailed model
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An example problem: cantilevered beam

• 1D FEA of a Cantilevered Beam with Tip Loading
– Inputs: root and tip radii of the conical beam

– Outputs: mass, tip displacement

• Formulation:
– Single Objective:

minX (0.2 mass + 0.8 δtip)

– Multi-Objective: 
minX (mass, δtip)

• Model Fidelity =  #finite elements
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Optimal Modeling Policies

• SO Formulation: 

P500={2,4,13,33,62,500}

– 100-fold reduction in cost
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• Discriminatory power approaches 
the analytic result asymptotically

• SO yields 1 solution

• MO yields 327 alternatives

• MO Formulation: P500={6,49,188,500}

• 4-fold reduction in cost



ARL General Observations

• Sequential model
– Neatly aligns with set-based design

– Decision-makers already implicitly make these decisions

– Attempting to place formalism on the process

• Concept-Detailed Modeling Connection
– Key piece to the sequential model process

– Building good bounding models requires understanding of the 
physics of the problem

– The value function plays a core role 
• Must trace bounds to values

• Multiple objectives greatly reduces discriminatory power of models

• Broadly Applicable, e.g.
– Equations that can be discretized

– Cost modeling strategies

– Rapid heuristics solvers to NP-hard problems

– Time step simulations 
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