

ENGINEERING

EARCH CENTER

## Identifying the Requirements and Design Variables for New Aircraft Considering Fleet-Level Objectives Under Uncertainties

Satadru Roy, William A. Crossley, Navin Davendralingam, Parithi Govindaraju School of Aeronautics and Astronautics, Purdue University



## Research Task / Overview

- Can we identify a quantitative approach to determine the "right requirements" for a new system?
- Can we concurrently optimize multiple systems?

# **Goals & Objectives**

### **Develop decision support framework that:**

- Assists decision-maker or acquisition practitioner to identify new system requirements that improve (maximize) system-level objective
- Allows new system to operate along with the existing system
- Addresses multi-domain uncertainties and uncertainty propagation
- Can this approach address multi-domain uncertainties?

## Data & Analysis

### Case - Study

• A notional 31-route network airline with hub at Memphis



Source: Great Circle Mapper (www.gcmap.com



 User-determined 5 new aircraft to be acquired (red bar)

Aircraft Types



#### Design variables at top level problem for enumeration

### Methodology

#### Objective

Maximize fleet level expected profit

#### Variables

New aircraft requirements (design range, seat capacity)

New aircraft design variables (NLP: Nonlinear Programming)

Aspect ratio, taper ratio, wing sweep, engine thrust etc. Allocation variables (MIP: Mixed integer programming)

Trips, passengers carried on a particular route

#### Constraints

Passenger demand

Aircraft performance (takeoff distance, landing distance etc.)

Fleet operations (maximum operational hours, number of each aircraft types etc.)

### Addressing Uncertainty



Sequential Decomposition Approach



### **Preliminary Results I: Expected Fleet Profit**



- Green bar denotes baseline fleet with no new aircraft type-X in use
- 75 seats has higher expected profit
- 75 seats with 1200nmi design range leads to highest fleet expected profit

### **Preliminary Results II: Design-Allocation Subspace**

#### **Optimal Design Variables**

| Top Level (aircraft requirements) |      | DELTA<br>DELTA |
|-----------------------------------|------|----------------|
| Design Range [nautical miles]     | 1200 |                |
| Seat Capacity                     | 75   |                |



- Reliability-based design optimization (RBDO) formulation to handle *uncertainty in new* system design
- Descriptive sampling approach to handle *uncertainty in passenger demand*
- Propagation of uncertainty from aircraft sizing subspace
  - Performance of new aircraft is uncertain
  - Coefficients in allocation problem have distributions
- Used a 'Robust Optimization' approach
  - Interval Robust Counterpart (IRC) formulation:
    Optimize considering the nominal and worst-case values of uncertain parameters within a pre-defined tolerance limit

### **Future Research**

- Alternate approach to address multi-domain problems as Mixed-Integer Non-Linear Programming (MINLP) problem
  - Requires a new MINLP solving approach to address complex tightly coupled systems
  - AMIEGO (A Mixed Integer Efficient Global Optimization) A



| Aircraft Design Subspace |        |  |
|--------------------------|--------|--|
| Aspect ratio             | 12.0   |  |
| Taper ratio              | 0.3    |  |
| Thickness to chord ratio | 0.095  |  |
| Wing area [sq. ft]       | 664.76 |  |
| Wing sweep (LE) [deg]    | 13.22  |  |
| Thrust per engine [lbs]  | 9351   |  |



■ DC-9-10

AC-X-New

DC-9-30

ource: Delta Cargo

- Result resembles Embraer 175 type aircraft\*
- Optimized w.r.t. this airline network
- Acquisition practitioner seeks customized aircraft tailored towards their operational behavior

DC-9-50

 Aircraft manufacturer wants to sell aircraft to multiple customers – Changing to a multiobjective approach at the top level would facilitate this

\* Limited by the fidelity of the aircraft sizing tool used in the study

- MINLP solver to address Aircraft design and Airline allocation as MINLP problem (under development)
- Would enable to integrate other complex systems
- For example, an integrated Revenue Management System will enable to decide the ticket prices under uncertain demand (under development)

MINLP Problem

### **Contacts/References**

Satadru Roy, Ph.D. Candidate (email: <u>roy10@purdue.edu</u>)
 William A. Crossley, Professor (email: <u>crossley@purdue.edu</u>)

Address: 701 W. Stadium Ave., School of Aeronautics & Astronautics, Purdue

University, West Lafayette, IN 47907

#### This work has been partially funded by:

- Naval Post Graduate School, Acquisition Research Program through the grant number N00244-15-1-0063
- NASA through grant number NNX14AC73A as a part of the LEARN project: "Scalable Multi-fidelity Design Optimization: Next Generation Aircraft and their Impact on the Air Transportation System"

#### SERC Sponsor Research Review, November 17, 2016