

SYSTEMS ENGINEERING RESEARCH CENTER

Self-Organizing Cooperative Dynamics in Government Extended Enterprises

Larry John, Ph.D.

- Propose and evaluate a new, SoS-based theory of cooperation among autonomous government organizations
- Strong support for 3 hypotheses about 4 key forces, moderate support for hypothesis 4; proposed fifth hypothesis may not be needed
- Important reinforcing and offsetting effects exist between: 1) pairs of forces, 2) each force and strategy, 3) sets of forces and strategy

Demonstrate a "laboratory" and process for further work \bullet

See if the combination of the theory, simulation and coding process lacksquareproduced results that mirror reality

Goals & Objectives

- Discover the **canonical forces** that influence an organization's willingness to be part of an extended enterprise, especially if the organizations are not motivated by economic forces
- Explain why networks of autonomous organizations often fail to achieve their public goals because their members fail to cooperate
- Develop and test **a useful theory** explaining the foundational forces supporting voluntary cooperation within SoS

<u>Hypotheses</u>: In a system of systems S with autonomous components a_1 through a_n , a_x 's levels of Probability of Cooperation with a_v will be: 1.positively correlated with a_x 's level of Sympathy with respect to a_v ,

- Determine whether model balances sensitivity with robustness to variance in input data
- 2.positively correlated with a_x 's Trust with respect to a_y , 3.negatively correlated with a_x 's level of Greed with respect to a_y , 4.negatively correlated with a_x 's level of Fear with respect to a_y , 5.positively correlated with a_v 's History of Behavior

Data & Analysis

Methodology

- Researched potential cases (Committee directed use of three cases related to emergency management)
 - Sought cases involving GEEs with repeated internal interactions centering on "costless" information sharing
- Case 1: Successful federal and multi-state response to 2006 foodborne *E. coli* outbreak (47 interactions)
- Case 2: Design and construction of the Lake Ponchartrain and Vicinity Hurricane Protection Project (67 interactions)
- Case 3: Evacuation of New Orleans associated with Hurricane Katrina (71 interactions)

• Coding simulation

inputs

Integrative literature review defined <u>Cooperation</u>:

Activity one actor deliberately and voluntarily carries out that benefits other actors individually or collectively, potentially at a cost to the original actor and with no guarantee of a direct benefit to itself

- **Grounded Theory:** Literature review and thought experiment showed where existing definitions and theories fall short, and provided key ideas for the new theory: interaction of four forces (sympathy, trust, fear and greed) affect decision making in cooperation dilemmas
- Case Studies: Three emergency management cases, each with key decisions fed by many actor-to-actor interactions
- **Open Data Coding:** Used content analysis processes to translate case information into inputs for simulation

	Sharer					Receiver							
Exchange #	Agent ID	Strategy	S	Т	F	G	Agent ID	Strategy	S	т	F	G	Depends on Exchange #
1	a10	1	3	3	0	0	a1	2	2	2	0	0	
2	a10	1	3	3	0	0	a4	7	3	3	0	0	
3	a10	1	3	3	0	0	a6	8	2	2	1	0	
4	a10	1	3	3	0	0	a8	5	2	2	1	0	
5	a10	1	3	3	0	0	a11	7	2	2	1	0	
6 Critical	a6	8	2	2	1	0	a3	3	3	2	1	2	3
7	a6	8	2	3	1	0	a5	2	3	3	1	1	3
8	a6	8	2	2	1	0	a12	4	3	2	1	2	3
9	a6	8	2	2	0	0	a14	6	3	2	2	2	3
10	a4	7	2	2	1	1	a5	2	3	3	1	2	2
11	a12	3	3	1	2	1	a3	8	3	1	2	1	8

	Findings
-	normally di

Data not normally distributed (Q-Q plots and A-D test)

Clear correlations for all forces except Greed

Strong support for hypotheses - 3, moderate support for hypothesis 4, hypotheses 5 not needed to explain behavior

Levees Case

	HVDOTHESES	CORR	ELATIONS B	VCASE		
	ITFOILSES	CONN				
#	<i>a_x</i> 's level of ProbC with <i>a_y</i> will be:	Spinach	Levees	Evac	Conclusion	Comments
1	positively correlated with a_x 's level of Sympathy with respect to a_y	Moderate Positive (<i>rs</i> = 0.59)	Strong Positive (<i>rs</i> = 0.64)	Strong Positive (<i>rs</i> = 0.62)	Strong positive correlation	Spinach: No actors with Sympathy = 1 Levees; No actors with Sympathy = 0 Evacuation: No actors with Sympathy = 0
2	positively correlated with a_x 's level of Trust with respect to a_y	Weak Positive (<i>rs</i> = 0.29)	Strong Positive (<i>rs</i> = 0.66)	Strong Positive (<i>rs</i> = 0.69)	Strong positive correlation	Spinach: No actors with Trust = 0
3	negatively correlated with a_x 's level of Fear with respect to a_y	Moderate Negative (<i>rs</i> = -0.47)	Strong Negative (<i>rs</i> = -0.67)	Strong Negative (<i>rs</i> = -0.60)	Strong negative correlation	Spinach: No actors with Fear = 3
4	negatively correlated with a_x 's level of Greed with respect to a_y	Moderate Negative (<i>rs</i> = -0.43)	Moderate Negative (<i>rs</i> = -0.54)	Moderate Negative (<i>rs</i> = -0.46)	Moderate negative correlation	Spinach: No actors with Greed = 3 Levees: No actors with Greed = 3 Evacuation: ProbC <u>rose</u> 0.03 as Greed went from 2 to 3. Possible discontinuous relationship
5	positively correlated with a'_x s History of Behavior toward a_y	Not tested	Not tested	Not tested	Unable to determine	All cases failed to provide sufficient repeat interactions to establish clear histories of behavior

Discrete Event Simulation:

- Custom-built computational simulation using game theoretic approach simulates each case study.
- Monte Carlo processes over 10,000 runs of each interaction add randomness to account for boundedly rational actors.
- Sensitivity analysis established the relative importance of each set of parameters and the model's robustness to variance in the input data
- **Data Analysis:** Exploratory data analysis techniques, nonparametric statistics processes and Multiple Correspondence Analysis to understand the data, test the hypotheses and investigate key details

Future Research

- **Re-do interactions** analysis using Joint Correspondence Analysis (JCA)
- **Develop agent-based simulation** using theory to derive simple rules (may resemble simulations by Baldwin):
 - Agent movement, proximity or strength / persistence of relationships
 - Run the same cases used in this effort

•	Important
	interactions exist
	between all
	variables

Spinach Case*

Evacuation Case

πηρυπαπ		1	1.			н	F		
intoractions ovist	Variable Pair		Relationship	Variable Pair	Rank	Relationship	Variable Pair	Rank	Relationship
	Sympathy and Fear	1	Offsetting	Strategy and Sympathy	1	Situational	Sympathy and Greed	1	Offsetting
between all	Fear and Greed	2	Reinforcing	Fear and Greed	2	Reinforcing	Fear and Greed	2	Reinforcing
variables	Strategy and Fear	3	Situational	Sympathy and Fear	3	Offsetting	Sympathy and Fear	3	Offsetting
vallables	Sympathy and Trust	4	Reinforcing	Strategy and Trust	4	Reinforcing	Sympathy and Trust	4	Reinforcing
	Sympathy and Greed	5	Offsetting	Strategy and Greed	5	Situational	Strategy and Trust	5	Situational
Force-on-force	Strategy and Sympathy	6	Situational	Strategy and Fear	6	Situational	Strategy and Fear	6	Situational
	Strategy and Greed	7	Situational	Sympathy and Greed	7	Offsetting	Strategy and Greed	7	Situational
interactions are	Strategy and Trust	8	Situational	Sympathy and Trust	8	Reinforcing	Strategy and Sympathy	8	Situational
	* Limited diversity o	fetrat	ogios and						

sensitive to Strategy . Limited diversity of strategies and force configurations

- Research, simulate and analyze additional case studies
 - Pursue additional domains including cooperation among:
 - **Research Institutions** • Governments
 - NGOs Military organizations

Contacts/References

- Full text available online at: http://www.anser.org/docs/Self-Organizing_Cooperative_Dynamics_in_Government_Extended_Enterpri ses_Larry_John_29June2016.pdf
- Larry.John@anser.org 703-416-3199 (office) 703-785-6331 (mobile)

SERC Sponsor Research Review, November 17, 2016