

### **RT-137: Ilities Tradespace and Affordability**

**Resource Analysis Based on** 

**System Architecture Behavior** 

Monica Farah-Stapleton, Ray Madachy, Mikhail Auguston, Kristin Giammarco



## Research Task / Overview

This aspect of the RT-137 task leverages the following innovations of Monterey Phoenix Behavior Modeling:

- Behaviors and interactions of the system AND environment are described in one uniform framework
- System interactions among components are specified separately from system behaviors of components
- A library of all possible scenarios (up to a specified scope limit) are generated from the separately specified behaviors and interactions, leveraging the small scope hypothesis that most flaws will be

# Goals & Objectives

- To enable affordability tradeoffs with integrated software-hardwarehuman factors through Total Ownership Cost (TOC) modeling
  - Integrated costing of systems across full lifecycle operations
  - Extensions and consolidations for DoD application domains
  - Tool interoperability and tailorability (service-oriented)
- To leverage **Monterey Phoenix (MP)**, a system and software architecture and workflow modeling framework based on **behavior modeling**.
- To improve affordability-related decisions across all joint services
- To assess MP for automatically providing cost information from architectural models

## Data & Analysis







#### Apply Function Point (FP) Counting Methodology to Monterey Phoenix (MP) Behavioral Model:

- Identify typical questions to be answered and determine type of count
- Describe system and environment behaviors using MP, and extract Unadjusted FP from the model
- Assess effort using MP-COCOMO II tool, and visualize results in views specific to stakeholders



express the amount of functionality in a system, and can be used

| EP | Description        | ILF/EIF             | FTR /<br>DET           | Complex | UFP |
|----|--------------------|---------------------|------------------------|---------|-----|
| EQ | State Drop<br>Down | Golf<br>Courses (I) | (1,2)                  | Low     | 3   |
|    | External Inquiries | EQ                  | External Inquiries: EO |         |     |

#### **UFP Calculation:** FPA Manual Count

1 FTR and 2 DETs identified from the behavior of the State Drop Down EQ

0-1 FTRs and 1-5 DETs correspond to a Low functional complexity rating

A Low functional complexity rating corresponds to <u>3 UFPs</u>

| Software Size                        | Sizing Method Fur   | nction Points | ł.        |                                 |                 |             |
|--------------------------------------|---------------------|---------------|-----------|---------------------------------|-----------------|-------------|
| Unadjusted Function I                | Points 280          | Language      | C         | 💌 Sel                           | lect Input File | teetime.mp  |
| Software Scale Drive                 | rs                  |               |           |                                 |                 |             |
| Precedentedness                      |                     | Nominal 💌     |           | Architecture / Risk Resolution  | Nominal         | Process     |
| Development Flexibility              |                     | Nominal [     | •         | Team Cohesion                   | Nominal         |             |
| Software Cost Drive                  | rs                  |               |           |                                 |                 |             |
| Product                              |                     |               | Personnel |                                 | Platform        |             |
| Required Software Re                 | eliability          | Nominal       | •         | Analyst Capability              | Nominal         | Time Cor    |
| Data Base Size                       |                     | Nominal       | •         | Programmer Capability           | Nominal         | Storage C   |
| Product Complexity                   |                     | Nominal       | •         | Personnel Continuity            | Nominal         | Platform \  |
| Developed for Reusa                  | bility              | Nominal [     |           | Application Experience          | Nominal         | Broject     |
| Documentation Match to Lifecycle Nee |                     | Nominal       | •         | Platform Experience             | Nominal 💽       | Use of Sc   |
|                                      |                     |               |           | Language and Toolset Experience | e Nominal       | Multisite ( |
|                                      |                     |               |           |                                 |                 | Required    |
| Maintenance Off 💌                    |                     |               |           |                                 |                 |             |
| Software Labor Rates                 |                     |               |           |                                 |                 |             |
| Cost per Person-Month                | n (Dollars)         |               |           |                                 |                 |             |
| Calculate                            |                     |               |           |                                 |                 |             |
| Results                              |                     |               |           |                                 |                 |             |
| Software Developme                   | nt (Elaboration and | Construction  | )         | Staffin                         | g Profile       |             |
| Effort = 150.6 Person-               | months              |               |           |                                 |                 |             |



#### UFP Calculation: Extracted From MP

 1 COORDINATE interaction associated with State Drop Down EQ behaviors

•State Drop down EQ COORDINATE contains a nested COORDINATE (2 ADDs)

•The 2 ADDs relate to 2 DETs

ROOT Golfcourses\_ILF relates to 1 FTR

•0 -1 FTRs and 1-5 DETs correspond to a Low functional complexity rating

•A Low functional complexity rating corresponds to 3 UFP

•EQ State Drop Down is equal to 1 COORDINATE with a weight of 3





to estimate system cost. Of specific interest are the *input/output* activities of the system.



### **Terminology:**

- External Inputs (EI): Data that is entering a system
- External Outputs (EO) and External Inquiries (EQ): Data that is leaving the system
- Internal Logical Files (ILF): Data that is processed and stored within the system
- External Interface Files (EIF): Data that is maintained outside the system but is necessary to satisfy a particular process requirement

Sources: IFPUG

## **Future Research**

- Refine weights for each Transactional Function
- Refine relationship between steps of a FP Analysis Elementary Process
- The MP architecture model is based on behavior modeling, providing a bridge between the requirements and high level design.
- MP as a **formal architecture model** is a source for **cost estimate** information early in the **design phase**.
- The concept of an **event** in MP is an abstraction for activity within the system. It is **rendered as a pseudo-code**, appropriate for capturing the functional aspects of requirements, and supportive of refinement.
- UFP can be identified in the MP architecture model as an interaction abstraction (i.e. COORDINATE or SHARE ALL constructs).
- The structure and the complexity of interactions in MP provide a source for assigning weights contributing to the UFP.
- Since an MP model is precise and formal, FP metrics can be identified by automated tools.

### and MP descriptions

- Nested COORDINATES
- ILF and EIF behavioral representations in MP
- Apply methodology to iTAP UAV case study and IFPUG case study

# **Contacts/References**

- Monterey Phoenix and Related Work: <u>http://faculty.nps.edu/maugusto</u>
- MP Wiki (including full bibliography): <u>https://wiki.nps.edu/display/MP</u>
- Public MP server with MP editor, trace generator, and trace graph visualization: <u>http://firebird.nps.edu/</u>
- MP COCOMO Tool: <u>http://csse.usc.edu/tools/MP\_COCOMO</u>

### SERC Sponsor Research Review, December 3, 2015