Systems Engineering Research at Wayne State University: An Overview

Lead Senior Researcher: Walt Bryzik, Ph.D., DeVlieg Chair & Professor of ME

Presenters: R. Darin Ellis, Associate Professor, IME Kyoung-Yun Joseph Kim, Assistant Professor, IME

SERC Research Review PSU Great Valley, PA October 15-16, 2009

Background

- Wayne State University
 - University Research Corridor
 - In Detroit, the "Arsenal of Democracy"
- Major customer/stakeholders
 - TARDEC & TACOM (all Army ground vehicles)
 - Defense Contractors (e.g. General Dynamics)
 - Domestic Auto Industry
- TARDEC & TACOM responding to SE revitalization
 - WSU's SE efforts build on long relationship with TARDEC & TACOM

Army Ground Vehicle SE Concerns

Applications

New Vehicles & Upgrades Net-centric Ops Robotic & Manned Vehicles Combat, Tactical & Support

Functions

Crew Health & Safety Power & Energy Mobility Survivability C4ISR Lethality

Attributes

Deployability Sustainability Endurance Capacity Reliability Maintainability

Systems Engineering Revitalization at TARDEC

SER UARC Research Strategy Thrusts

<u>Enterprise Responsiveness</u>

- Explore advancements in SE MPTs that are responsive to enterprise strategic and program-level needs,
- Enable agility and responsiveness during program conceptualization, execution, strategic choice & assessment.
- Support cross-system and enterprise decisions.

<u>Systems Science and Complexity</u>

- Advance systems science and systems thinking for application to engineering and management of complex systems and capabilities.
- Support systems engineering and management of complex systems, SoS, software-focused, & net-centric.

• SE Workforce

- Explore future SE workforce competencies
- Explore approaches to cultivate, educate, and prepare the future SE workforce.
- Consider the nature of the environment, system types, and changes in SE MPTs with respect to competencies.

<u>Program Management and SE Integration</u>

- Promote and integrate SE methods, processes, and tools with program execution activities within all aspects of program management to include political issues, cost issues, all other PM tools.
- Communicate the effectiveness of SE to leadership and PMs so that there will be increased usage of SE.

<u>Life Cycle Systems Engineering Processes</u>

- Advance system engineering life cycle technical and management processes.
- Mature and Advance fundamental systems engineering technical and technical management processes.
- Evolve fundamentals to consideration security, information age tools, and lean principles.

• Enterprise Responsiveness

• Systems Science and Complexity

• SE Workforce

• Program Management and SE Integration

• Life Cycle Systems Engineering Processes

Ground Vehicle Power and Energy Systems

(Bryzik & Henein)

Detection of SOC and Mode of injection using Ion Current

SERC Research Review PSU Great Valley, PA October 15-16, 2009

2

• Enterprise Responsiveness

• Systems Science and Complexity

• SE Workforce

• Program Management and SE Integration

• Life Cycle Systems Engineering Processes

Rapid HFE Test & Evaluation to Support HSI in Technology Development Projects

(Ellis & Witus)

• Enterprise Responsiveness

• Systems Science and Complexity

• SE Workforce

• Program Management and SE Integration

• Life Cycle Systems Engineering Processes

• Enterprise Responsiveness

• Systems Science and Complexity

• SE Workforce

• Program Management and SE Integration

Life Cycle Systems Engineering Processes

SE Tools for Effective Deployment of Condition-Based Maintenance and Performance Based Logistics

SERC Research Review PSU Great Valley, PA October 15-16, 2009

• Enterprise Responsiveness

• Systems Science and Complexity

• SE Workforce

Sustainable System Information Management (SE Informatics):

Causal Knowledge Representation & Analysis

Rough Set-Based Semantic Rule Complexity Reduction

(Kim)

Program Management and SE Integration

• Life Cycle Systems Engineering Processes

SERC Research Review PSU Great Valley, PA October 15-16, 2009

Causal Knowledge Representation and Analysis

 Current limitations of knowledge systems in systems development & acquisition

• Causal knowledge representation by

COLLEGE OF ENGINEERING

• Causal Knowledge network

- Degree of Causal Representation (DCR) is a causal representation measure, which is combined with
 - Causality (C), Network Connectivity (NC),
 Weighted Network Connectivity (WNC)

Rough set based semantic rule complexity reduction

3

5

6

?

+

four

- Intensive design knowledge in collaborative environment
- Efficient design rule management methodology required

medium

compact

medium

medium

low

?

Minimal design rule selection

Rule	lf	Then
1	(<i>f</i> ₂ =31)	<i>d</i> =1
3	$(f_4 = 0)$	<i>d</i> =1
5	(<i>f</i> ₆ =1)	<i>d</i> =1
7	$(f_{9}=0)$	<i>d</i> =1
Rule	lf	Then
Rule 2	If (<i>f</i> ₃ =1)	Then d=1
Rule 2 4	$(f_3=1)$ ($f_5=1$)	Then <i>d</i> =1 <i>d</i> =1
Rule 2 4 6		Then <i>d</i> =1 <i>d</i> =1 <i>d</i> =1

• Enterprise Responsiveness

Systems Science and Complexity

Socio-Cultural Technical Systems Roadmap for Implementing IPD Teams

(Gluesing)

SE Workforce Development: Key Issues for WSU

- SE is growing in MI
 - Government (DoD, NASA)
 - Contractors (GDLS, BAE, SAIC)
- Customer-focused approach
 - Tight integration with stakeholders
 - Need options for offerings (Grad Certificate leading to MS)
 - Need "SE" brand, not just "engineering management"
- Build on successes

WAYNE STATE

COLLEGE OF ENGINEERING

- Engineering Management onsite program at Ford
- Use existing coursework where possible
- Enrich with case studies from local partners (TACOM/TARDEC, GDLS)

Graduate Certificate

- SE/IME 6840 Project Management
- SE/IME 7995 Systems Engineering
- SE/IME 7720 Engineering Risk and Decision Analysis
- SE/IME 7998
 Engineering Management and Leadership

End

Questions?

SERC Research Review PSU Great Valley, PA October 15-16, 2009