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ENGREEHNG What Iis a swarm system?

PRAESTANTIA PER SCIENTE ¢ ,
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“Swarm robotics is the study of how large numbers of relatively
simply physically embodied agents can be designed such that a
desired collective behavior emerges from the local interaction
among agents and between agents and the environment.” !

e General attributes:
— Decentralized control
— Agent autonomy
— Large numbers of agents following simple rules

e Relation to systems engineering:
— Swarm systems are complex adaptive systems
— Exhibit collective emergent behavior wwiw wired.com

— INCOSE complex systems guiding principles?:
e |dentify patterns
e “Influence & intervene” rather than control

e “Zoomin and zoom out,” multiple views

— Cognitively challenging to operate multiple vehicles3#>

e Air traffic controller research

www.wikipedia.org

Reference: ! Sahin 2005, 2 Sheard 2015,
SSRR 2017 November 7, 2017 5, mings 2007,  Olson 2004, 5 Hillburn 1997 3



SYSTEMS
ENGINEERING

RESERRCH CENTER

Current
"”\»

§ Programmer

Operator —~g

Smgle Vehicle Pilot : —

I . P, -
—w -
e

Swarm Commander |

November 7, 2017

\

N

www.modelairplanenews.com



SYSTEMS
ENGINEERING

RESERRCH CENTER

Research Focus ©

Problem

e Informal relationship between swarm mission
engineering and swarm systems engineering
impedes architecture reusability

e Swarm system architecture is dominated by
bottom-up, behavior-based design

@a._.:: -
sSub-swarm %‘l}*

sub-swarm

Cognitively burdened
Swarm Commander

 Informal

 Operated at single behavior level

» Different action plans for each mission
* Low flexibility

* Micro-management approach

Proposed Solution

Transfer typical rule-based decisions
from the Swarm Commander to the
swarm, freeing the human to make
rules of engagement related
decisions

Formal

* Reusable common patterns

e Modular

* |ntuitive

e Platform agnostic

* Experiential heuristics-
based

SSRR 2017 Swarm systems are being engineered without guidance from swarm doctrine 5



Intended Benefits of Swarm
ENGINEERING Architecture
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Formalize relationship between swarm mission
engineering and swarm systems engineering to
promote architecture reusability

Swarm

e |ntuitiveness Arcgitlecture
Models ~

=)

e Modularity
e Composability

e Mission Doctrine

S

Integration
ocrin cN;EVnV}sg;ZgT tkj
Doctrine ity
! Framework User

Feedback
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Mission-based Architecture for Swarm Composability

Missions Phases Tactics Plays Algorithms
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Operational Architecture Solution
Architecture
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e Swarm mission describes the overall task and purpose delineating
actions assigned to the UAV swarm

—Examples: intelligence, surveillance, reconnaissance (ISR), humanitarian
assistance/disaster relief (HADR), search and rescue (SAR), and counter drug
operations

e Research focuses on three basic missions:

—

S Lo O Mo

ccccc

Source: ARSENL 2015

Adapted from: USAID 2010

- Maritime Interdiction Operations (MIQ) <
SSRR 2017 Contact of Interest (COI) OV-1 8
Adapted from: Okon 2012
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e Swarm phase describes a distinct time period
within the mission

e There are five operational phases in a swarm
mission (M):
— Preflight (P;)
— Ingress (P,)
— OnStation (Ps)

M
— Egress (Py) [Mission}
— Postflight (Ps)

P.1 ' P.2 ' P.3 ' P.4 ' P.5 '
®—) Preflight —> Ingress —> OnStation —> Egress —> Postflight

DECOMPOSED DECOMPOSED DECOMPOSED DECOMPOSED DECOMPOSED

SSRR 2017 November 7, 2017 Top-level diagram of simulation developed in Innoslate™
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Swarm Tactic and Swarm Play
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e Swarm tactic: employment and
ordered arrangement of agents
in relation to one another for
the purpose of performing a

specific task

—Each tactic composed of one
or more swarm sensor and

maneuver plays

—Designed to be used in
multiple missions

—Examples: search, divide,
evade, and attack

SSRR 2017
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't9 tacti
+«—— 1aClIC
‘ Evade
| DECOMPOSED
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 Swarm play: maneuvers and behaviors of swarm
as a collective of agents with specific triggers and
temporal constraints

EMCON

November 7, 2017

Designed to be used in multiple missions

Each play composed of one or more swarm algorithms

Examples: launch, transit, split, join, or bit, and sensors

Diagram of part of simulation developed in Innoslate™ 10
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 Three general categories®:
 Reactive: sense and act, pheromone-

based, and other biologically inspired p8.3
algorithms | | Eﬁ’csgﬁ play
* Reynold’s “Boids” flocking, bee
colony, ant colony A
e Deliberative: require information ( S - \
trading and solution deliberations N =

e Sorting, consensus, greedy selection,
physicomimetic

Sensors ™ Sensors evcon  @ad '
e Evolutionary: genetic algorithms and @-» Z a,fghggghﬁn'“—mﬂ, Collective
other fitness-based optimization eptiens 7 | |
functions

Sensors emcoN @2
s Scheduling
 Swarm algorithms: step-by-step | \
procedures used by the controlling algorithms

software to solve a recurrent task

SSRR 2017 November 7,2017  References: 1Senanayake et al. 2015, Mitchell 2009 11
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MASC Methodology <=5

1. Develop mission
scenario

2. Depict swa{rrh

behavior at
tacticslevel ]
, . 7. Swarm doctrine &
3. Develop mission swarm system
simulation requirements
beginning at
phase level
4. Check for

logical errors

[ s,

L

5. Review
implementation
with stakeholder

Revise
tactics

SSRR 2017

November 7, 2017 12
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+  Multi-national Consider this scenario....
maritime
interdiction
operation

e UAVswarm
supports boarding
team with
surveillance,
communication
relay

e Swarm provides
real-time, close
range sensor
collection

Maritime Interdiction Operations (MIO)
Contact of Interest (COI) OV-1 Adapted from: Okon 2012
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MIO Mission Tactics Level as FSM

‘ PRAESTANTIA PER SCIENTq ’
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. Flight ready
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MIO Mission

Activity Diagram Simulation

o)/

&

€
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Diagram of part of simulation developed in Innoslate™
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Conclusions <

[ TRAESTANTIA PER SCIENTLA4¢ )
\ /Y

"MIO Missi
Mission iesion

P.3.MIO
onstation  Phase
DECOMPOSED

SSRR 2017
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e Support improved graphical user interface for
UAV swarm operations

e Incorporate system and operational failure
modes into simulation

e Develop swarm system evaluation measures of
performance

SSRR 2017 November 7, 2017 20
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Questions?
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Drone problems....

PEOPLE IN THE PARK KEEP | | OKAY, LOCKING ON...
FLYING DRONES NEAR ME,
S0 TVE BULT A SYSTEM

TO SHOOT THET? DOWN.

COOL! OH YEAH,
N\ \ THERES ONENOL. | | DAIN.
TME FOR A TEST! /

\\
TH| e
h'h-d&-—ah-;-a-&d-ﬁ‘a‘su-‘--- I%I

WAIT, IT JusT
CRASHED.

HERE COMES ANOTHER
ONE! AlM FOR... NOPE,
IT GOT STUK N A TREE.

/

o b re n.-g o, o i o et Ml e

{ THKEE. HOUKS LATER... |—

FINALLY, TWO MORE JUST-
NO, ONE CRASHED AND THE
OTHER 1S HURTUNG SIDEWAYS
TOUARD THE LAKE.

(uu YOU PEDPLE. LEARN

0 FLY THESE THNGS?!
/

b .“o—o‘b‘ «J\“‘.—-.J-ﬂh-—'t« o

SSRR 2017

November 7, 2017

https://xkcd.com/1846/
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e Swarm technology — inspired by
biology:
—Swarm systems are robust, flexible, scalable

—Emergent behavior arises from interactions
between agents

e Enabling technologies for UAV
swarms:

www.wired.com

—Improved communication networks
iIncluding meshed ad-hoc networks

—Cost-effective miniaturized electronics:
GPS, video cameras, radio receivers,
autopilot processors

—Automation - must shift from operators to
monitors and supervisors

www.wikipedia.org
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e Orchestrated- one agent selected as temporary leader based on specified
factors (e.g., location, state, mission scenario)

— Architecture is somewhat robust, but not scalable to large or geographically dispersed
swarms, and places significant processing burden on one agent

e Hierarchical- resembles traditional military command and control (C2)

— Simplifies data flow, but not robust and inflexible when dealing with dynamic situations that
require rapid reactions from agents

e Distributed - characterized by absence of leader; swarm decisions made via
collective consensus among agents

— Robust and scalable, but requires communication network that will support potentially
increased data traffic, such as wireless, mesh communication networks

* Emergent swarming- describes relationships which occur in ant, termite, and
bee colonies in which there is no management

— Agents have no leader, have low situational awareness, and follow simple rules based on
local information (i.e. sharing pheremone signals)

— Have potential to become more relevant as genetic algorithms are further developed

SSRR 2017 November 7, 2017 References: Dekker 2008, Chung et al. 2013 28
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e Hybrid C2 architectures can be used to
maximize strengths of each:

- US Navy’s Cooperative Engagement Capability (CEC) anti-
air warfare system utilizes a distributed architecture for
situational awareness data and an orchestrated
architecture for target selection

e Finite State Machines (FSM): @ Transition 2

. . . : Transition 1 m
- Used in modeling multi-vehicle autonomous, unmanned ranstion

system architectures @ @
- Applicable to military swarm systems performing high risk

Transition 3

missions Transition 4&

- Probabilistic FSMs can be used to allow for bounded
behavior variability

www.oracle.com

e Petri Nets:

Effective in visualizing and analyzing systems in which

there are multiple, independent activities occurring at
same time

References: Dekker 2008, Weiskopf et al., 2002, Zhu et al. 2009
SSRR 2017 November 7, 2017 29



Problem Space Examination-

SYSTEMS

ENGINEERING Swarm System Design
Fleet Operatic during Freedc Fleet
Needs pediionary suike rous | | Needs -
NavyOutreach ;\\ h
( Missions Plays Algorithms

p1 at

1o ] ||

- |

-
SEMROIE & \——}4—
Algorithms Operational Architecture ~ Solution

Architecture
November 7, 2017 30
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e Military doctrine

0 “Fundamental principles by which the military forces or elements thereof guide
their action in support of national objectives” (JP 1-02)

0 Influenced by technology, the enemy’s capabilities, organizational
structure, and geography

O Applies at every level of warfare (strategic, operational, tactical)

e Military tactics
e Handling of forces in battle

* “The sum of the art and science of the actual application of combat power”
(Arthur Cebrowski, VADM USN, ret)

e “..the choice of tactics will also be governed by scouting effectiveness and
weapons range” (Hughes)

e Tactical doctrine organizes the playbook

SSRR 2017 November 7, 2017 References: Arquilla 2000, Hughes 2000, Tritten 1994 31
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e Swarming origins:
—British vs. Spanish Armada in 1588

—British vs. swarming German U-boat wolf packs in N. Atlantic Japanese
kamikaze attacks against US Navy

—Al Qaeda's strikes on multiple US targets on 11 Sept. 2001
—Typical NGO operations

e What will modern swarming doctrine look like?
—Transition from “few and large” forces to “many and small” units
—Centralized strategy
—Widely distributed, smaller units executing pulse-like tactics
—Distributed Lethality?

SSRR 2017 November 7, 2017 References: Arquilla 1997, 2000 32



Background- Current Doctrine vs.

SYSTEMS
ENGINEERING

RESERRCH CENTER

‘ PRAESTANTIA PER SCIENTq ’
X

Swarming Doctrine

Traditional Command Structure

Strategic Level
General Oficer
Operational Level = Plsanes
Operationa! - I' L‘—l".------
Eavel specialiel — Majar l
i
i
Colanel LH\T
Tactical Level 4 Lt
Tactical A nﬁ' : .
specialst foiy
Tactical Planney|
f']_" ]
\r"\v"’\.-]_,_.j f e
‘J 58 i
'%Ehange r Ese-make J_
= 'L,/'le-" """—————"'-.‘ J_ Tachcian .
Directed Action Source: Zweibelson, 2015

e Hierarchical

e Carrier strike group, amphibious
strike group

’ Swarming Command Structurej

e Widely distributed, small units,
multi-axis, convergent attacks

* Disperse and amass

e Historical: German U-boats,
Japanese kamikaze, Al Qaeda

The individual acts = There is no hierarchy
based on local = Information remains
conditions only. o1 localizad
2 W U 3  Pre-existing "rules” govern
MA, ‘' Local Conditions individual reaction
b A s . T & . - i
= Change = Sense-mebe, ~ [ | Lcn:al:zec_! acnpns _
L te—malll = cumulatively impact entire
i Directed Action ™. arganization
= No one "sees the big
picture”
* No “boss” or “Commander”
hange

Transition from “few and large” forces to

Source: Zweibelson, 2015

“many and small” -Dr. Arquilla

SSRR 2017

November 7, 2017

References: Edwards 2010, Arquilla 2000 33
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Maritime Interdiction Operations (MIO)
Contact of Interest (COI) OV-1

Common conceptual architecture-
level patterns for mission-suitable
swarm systems across a range of

MmISSIoNsS
P I [p2 I [P3 P.5
@-’ Prefight —> Ingress —> OnStation —>* Egress Postflight —).
DECOMPOSED

A modular, mission-oriented playbook from which
standard swarm tactics and missions can be formulated

SSRR 2017 November 7, 2017 34
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4 N 4

Problem Space Examination Solution Generation
r Develop:
* Review swarm system literature e Swarm architecture
o Study current UAV swarm operations [ | ¢ Mission scenarios
» Identify research opportunities » Operational activity models

k j ! Logic checking models

4 Solution Evaluation
* Logic checks
» Evaluate system behavior
» Elicit feedback from HSR
» Evaluate for intuitiveness, <
modularity, and integration of
K mission doctrine

4 N

Implication of Solution
« Document architecture and methodology
* Demonstrate reusability of tactics and
plays across missions
* Demonstrate composability at each level
SSRR 2017 k j Reference: Cross 1989 35
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Dudek’s swarm robotics taxonomy (Dudek et al., 1993)

Bottom-up, behavior-based design

— Agent-based modeling (Bonabeau 2002, Munoz 2011)

— Finite state machine (automata) (Weiskopf 2002, Soyal & Sahin 2005)
— Brooks Subsumption architecture (Brooks 1985)

— Petri Nets (Levis & Wagenhals 2000, Palamara 2008)

Top-down design methods
— Deloach et al.”s Multi-agent Systems Engineering methodology (DelLoach et al. 2001)

— Brambilla’s property-driven, four phase method (Brambilla et al., 2012)

Playbooks

— RoboFlag multi-vehicle simulation environment (Parasuraman 2003, Squire et al. 2004)
— RoboCup soccer (Browning et al. 2004)

— McLurkin’s library of behaviors for swarm robots (McLurkin 2004)

— Smart Information Flow Technology (SIFT) Playbook-enhanced Variable Autonomy Control System
(PVACS) (Goldman 2005)

— DARPA OFFSET program - human-swarm teaming and swarm autonomy within an urban gaming
ssrapaironment (DARPA TTO 2017) November 7, 2017 36
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* Applied as guidelines to Innoslate models and simulation:

* Every activity not designated a context activity should have at least one parent

(Va; € A)[—context(a,)— (Ja, € A)decomposes(ay,a, )]

* No activity shall have exactly one child

(Va, € A) (Va, € A) [decomposed by(a,,a,)—
(3a; € A)decomposedby(a,,as) A (ay # az)]

* No activity shall be decomposed by itself

(Va € A)[~decomposedby(a, a)]

» Every activity shall have at least one input or trigger

(Va € A) (3r € R) [input(r,a)V trigger(r,a)]

* No performer shall have more than seven children

(Vp:1 € P) [(Vp, € P)|decomposedby(p1,p2)| < 7]

SSRR 2017 November 7, 2017 Source: Rodano & Giammarco 2013
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* Finite state machines are concise way to depict swarm behavior

» Specify each tactic as a state
* Sub-swarms operate in one state at a time

A finite state machine (or automaton) M, can be defined by a 5-tuple!:

(€,38,s,, F, )
wherein:

 Eisthe setof inputsto M
* Sisthe set of states, including tactics, of M

e s, € S is the initial state of M (preflight completed and flight ready)

e F C §is the final state of M (all UAVs recovered)
e 4:5 X €= S isthe transition function (mappings of inputs to original states which result in state

change)
 FSM has modelling implications in Innoslate and
Monterey Phoenix
* Innoslate FSM do not interface with simulation
 MP does not permit implicit or explicit recursion in grammar
rules?
SSRR 2017 November 7, 2017 38
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ENGINEERING Plays Across Missions

Play SvS MIO HSR | HADR

Launch B B

Transit to WP

Orbit

Racetrack

Split (logic based)

Join

Disperse

Sensors ON

Sensors OFF

Sensors EMCON

Transmit video

Terminal approach

Landing B

Ladder pattern

Expanding square pattern B

Constricting square

pattern

Grid pattern

Random pattern B

\Weapon armed B

\Weapon fire

Follow target B

Forward communication

Jam

Smart greedy shooter

Patrol box shooter

\Wingman shooter

Tail following

Option 5
B = selected for baseline mission case study
(Innoslate model)

SSRR 2017 November7,2017 # = pnumber of HSR participants who selected play 4!
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Solution Generation & Evaluation —

SSRR 2017

tactics

position

Tactic 1IN Tactic Name Play 1D} | Play Name Algorithm 1D | Algorithm Name
1l Ingress pi.2 Sensors OFF al Scheduling
pl Launch ai Soring
il Sensors ON al Scheduling
a3 Soriing
a4 Collective consensus
2 Transit to waypaint al Flocking
al.l Boid's
al.l Farticle Swarm
Optimization |FS0O)
t13 Divide B Split {logec-hased ) a} Soriing
phd Sensors ON al Scheduling
a3 Sorting
a Collective consensus
3 Orbit al Flocking
al.l Boid's
al.2 P50
i3 Efficient scarch il Sensors ON al Scheduling
a3 Soming
a4 Collective consensus
) rll Ladder pattern al Flocking
al.l Boid's
al.2 PO
1% Manitor il Sensors ON al Scheduling
a3 Soriing
a4 Collective consensus
s} Racetrack al Flocking
al.l Boid's
al? P30
15 Communication relay [pH.1 Sensors ON al Scheduling
a3 Sorting
at Collective CTISUS
pi4 Transmit video al Scheduling
a3 Sorting
at Collective consensus
pl3 {Grid pattern al3 Levy flight
a3 Sorting
p I ay S at Collective consensus
\ ai.? Brownian motion
\\ pl# Forward communication |a2 Scheduling
a3 Sorting
at Collective consensus
14 Track al Scheduling
a3 Sorting
at Collective consensus
rl7 Follow target ab Firefly algorithm
a3 Ant colony optimization
al Artificial potential fields
19 Evade pi3 EMCON al Scheduling
a3 Soming
a4 Collective consensus
mh Jain a3 Sorting
a3 Artificial potential fields
o Disperse aj Artificial potential fields
t14 Amass mh Jain 2 Collective consensus
as Artificial potential fields
phd al Scheduling
a3 Sorting
at Collective consensus
i Orbit al Flocking
al.l Boid's
al.2 PS50
t15 Egress 2 Transit to waypaint al Flocking
al.l Boid's
al.2 PO
pil Terminal approach a3 Sorting
. Landing al Sorting
Seg OFF al Scheduling

algorithms

42
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@ e TS & — FSM applied to field
experimentation scenario

Target Target [destroyed
detected

//

-«
Track Target within envelope Attack d

Target not
destroyed

Egress commanded or

J Modified with additional
All UAVS recovered /‘/L;Eiﬁ‘\,d Landing WP intercepted Egress commanded or M AS C swarm taCtI CS

Egress <
g - low power

4

"\\ State § / -

T T
Flight ready | Ingress WP intercepted  Swarm Ready", OnStation WP Evasive Target destroyed
ngress > sme / ewepEd % Search
Not threatened
frget BDA
Lost track detected

Assess Target|not
hit de! ed

Threatened .

Evade -————— Track Target In_enve Attack
ress commanded or
low r
T
@; AllUAVs recovered  ~ Landing ™, _ Landing WP intercepted E » Egress commanded or
< | < gress <
SSRR 2017 ‘\\._EState {_.’November 7,2017 low power 43
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P.3.5V5.1

Swarms
OnStation
DECOMPOSED

Swarms

P.3.5VS SvS Mission at Tactics Level using
guesur P3SVS2 Ssten MASC Framework

Team

5 Blue Swarm
Team OnStation

————
DECOMPOSED
i) 6 L]
e a Nl destruyed
Track —>  Attack —> 8 roget TS ttack
P.3.5VS.3 ac O destroyed? c
= - r v DCOMPOSID arc [ necomrosn |
i : = 2 1
Arbiter Arbiter Scoring rch and — o Target [t cesoyes
OnStation ﬁ search > O detected?
DECOMPOSED Ext
Elue LiAVs
gﬂkllledby“
Bueswarm | Blue Swarm Receive
LA blesat_, ce Blue
OnSeation battle UFC!
WP d
. :omﬁ\mnn II°°° |
Blue: Swarm OnStation Rec/blue LAV sent
o penalty box
s ]
th Arbiter  <uritin
! (Blue) . J
: = e ey
commence battle
commisnd .

off station
decision
\ "‘
. H
" ¥ v
) Search& | | cearchand Receive off
. — SSH0Y > destroy blue [ station
| R targets decision
Red Suaem Grgiaton E:;.:;ﬁ;.t;.;:w ‘

Aed Twaem ‘ ¥ _,.-"
LAVE Red Swarm
Ly assemblesat Receive mm Contir kﬂgdu;\\rs
BnEtati > o killed by B ue
battle
WP
command

wal-time adversary
updateslled)

L

SSRR 2017

Y red swarm puse msg
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FSM in Monterey Phoenix W

EVSearch
behavior

SwarmRdy
EVSearch

FSM converted to MP by designating

the tactics as ROOTs?

Evade behavior Attack behavior BDA behavior Egress behavior

Track behavior

potential
undesired
behavior

& SCHEMA SVS
5 ROOT EVSearch_behavior:

S|

SwarmRdy
SwarmRdy_EVSearch
EVSeqrcg\

EVSearch_Track
EVSearch_Evade |
EVSearch_Egress

€hC
*);
EVSearch: onsta_WP_int;
tgt_det;

threat;

EVSearch_E Ton_pwr_egress;
ROOT Track_behavior:

™ C

EVSearch_Track
Track

a
Track_EVSearch |
Track_Evade
Track_Attack |

Track_Egress )*);

h: lost_track;
threat;
tgt_in_range;
Low_pwr_egress;

29 Tr 1
30 Track_Egress:
31

32 EVSearch_behavior, Track_behavior SHARE ALL EVSearch_Track, Track_EVSearch;

ROOT Evade_behavior: (* ( gr'ack,Evade | EVSearch_Evade )
vade
( Evade_EVSearch | Evade_Egress ) *);

no_threat;
low_pwr_egress;

SHARE ALL Track_Evade;

3 Evade_behavior, Track_behavior i
SHARE ALL EVSearch_Evade, Evade_EVSearch;

4 EVSearch_behavior, Evade_behavior

7 ROOT Attack_behavior:

*( Track_Attack |
8 ((BD A

A_Attack )
i Attack
0 ( Attack_BDA | Attack_Egress )*);

5

1

52 BDA_Attack:

3 Attack_BDA:
Attack_Egress:

tgt_not_destroyed;
assess_hit;
low_pwr_egres:

7 Track_behavior, Attack_behavior SHARE ALL Track_Attack;
‘ ROOT BDA_behavior: (* Attack BDA
BDA
C BDA_Attack | BDA_EVSearch ) *);

DA_EVSearch: tgt_destroyed;

Attack_behavior, BDA_behavior SHARE ALL Attack_BDA, BDA_Attack;
BDA_behavior, EVSearch_behavior SHARE ALL BDA_EVSearch;

ROOT Egress_behavior: ( EVSearch_Egress | Track_Egress |
Evade_Egress | Attack_Egress )
Egress;

End mission

SHARE ALL EVSearch_Egress;
SHARE ALL Track_Egress;
SHARE ALL Evade_Egress;
SHARE ALL Attack_Egress;

EVSearch_behavior, Egress_behavior

Track_behavior, Egress_behavior

) Evade_behavior, Egress,behavtor
Attack_behavior, Egress_behavior

1 ROOT Path: * 1 is container for nce*
36 COORDINATE Sa: C SwarmRdy | EVSearch | Track | Evade |
7 Attack 1 BDA | Egress |

onsta_WP_int | tgt_det | lost_track |
low_pwr_egress | threat | no_threat |
assess_hit | tgt_destroyed |
tgt_not_destroyed | tgt_in_range )

path sequ

Do
ADD $a IN Path;
0D;
COORDINATE <SORT CUT_END> $a: $3EVENT SUCH THAT 3a IN Path,
50 <SORT CUT_FRONT> $b: $SEVENT SUCH THAT $a IN Path
ADD $Sa PRECEDES $b;

HECKING

5 ENSURE FOREACH $x:Llow_pwr_egress
#Track AFTER $x ==@;

45
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Tactic SvS MIO MIO HSR HADR

Ingress B B B

Evasive search B

Efficient search
Track B

SN IENE NG, I N RN

Communication relay
Attack
BDA

Monitor
Evade B

Harass
Defend

Deter
Divide

Amass

OO0 (I NN [P W | NN W

Egress B
ACM
Option 1

B = selected for baseline mission case study (Innoslate model)
# = number of HSR participants who selected tactic

SSRR 2017 November 7, 2017 46
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M Mo
Mission

P.3.MIO
OnStati

Swarm Operations

Swarm
environment

jervionment s,

?#

Command &
Control

Aircraft

SSRR 2017

DECOMPOSED

fonwel ____,

Mission

on Phase

DECOMPOSED

P3.MIO.1

Swarm
OnStation

DECOMPOSED

P.3.MI0.2

OnStation

P.3.MIO.3
Swarm
environment
OnStation

P.3.MI0.4

Strike group |
ships OnStation

DECOMPOSED

P.3.MIO.5

Aircraft
OnStation

DECOMPOSED

Swarm
reaches
assigned 1
search area

Swarm
eaith | Coninve
onitor
loop

[

3

Divide

—>

Cons|

P

Target

Tactic
o

o col

Theeat
= 2
e Threator

© no threat

Subswarm -
7 Target Comtoey O detected?
—> & position Ol Loop -
nown?
Off station
Continue search or
mitor
¥
Receive MIO
. ff station
PV data and voice "
r |
al Evade
O passive or [foriruey g
9 active sensor
loop
Fuir
DECOMPOSED
¥
o
O Evade
S Loop ) ]
Ne tnreat o Evad p? pé
vade | cootnue . Ly .
g Mmaneuver Disperse LET
loop
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Not developing new
swarm behavior
algorithms

Subset of US
Navy Missions

DoD category

1-2 fixed-wing,
Not developing homogeneous UAVs
collision e

Research Scope & Assumptions

‘ PRAESTANTIA PER SCIEN TR l
N

Not including system
failures or failsafe

. modes in models
Tactics are

focused on inflig
mission phases

System operates under
distributed control using Not

mesh ad-hoc network addressing
operational

. \ \ \ \ \ \
avoidance
algorithms

Swarm Operations Team:
Swarm Commander,
Swarm Health Monitor,
Ground Crew

Not focusing on
logistical activities

~ Sub-swarm is lowest
_level unit for tactics

failures in
models

employment

Each sub-swarm
executes 1 tactic

like prototype (yet)



SYSTEMS
ENGINEERING

RESERRCH CENTER

1. Develop mission
scenario

2. Depiyct swarm

behavior at
tactics level
: 7. Swarm doctrine &
3. Develop mission swarm system
simulation requirements
beginning at phase
level
4. Check for
logical errors
( 5. Review
implementation

6. Revise tactics
L with stakeholder

SSRR 2017 November 7, 2017 50
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