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Problem:
There is currently significant emphasis on, and need for, the use of computational 
modeling & simulation (M&S) as a key component of development, test and 
evaluation of Warfighter systems within the Department of Defense [1].
This work focuses on developing a framework for integrating M&S and UQ-base 
probabilistic methods into the DoD systems engineering process, and leveraging 
M&S data to augment empirical models from ‘live’ testing/experimentation 
(especially when this testing is expensive or resource intensive) using Uncertainty 
Quantification techniques [2], with an emphasis on visual data assimilation 
methods.

The intent is to provide decision-makers with richer information for design 
decisions prior to prototype build, a simplified and credible approach to determine 
the utility of the M&S model in augmenting live testing, determine the need for 
additional testing, and determine the range of applicability for data augmentation 
relative to inherent system variation.  
The purpose is to inform the SE process, particularly physical and functional 
decomposition, concept selection, system design-build-test with accurate M&S-
based prediction and test results.

Problem Statement



SDSF 2017 November 7, 2017 3
DISTRIBUTION A. Approved for Public Release; Distribution is unlimited.

UNCLASSIFIED

Definitions

Model-Based Engineering (M&S):

An approach to engineering that uses models as an integral part 
of the technical baseline that includes the requirements, analysis, design, 
implementation, and verification of a capability, system, and/or product 
throughout the acquisition lifecycle.

Uncertainty Quantification (UQ):

The process of identifying all relevant sources of uncertainties, 
characterizing them in all models, experiments, comparisons of M&S 
results and experiments, and of quantifying uncertainties in all relevant 
inputs and outputs of the simulation or experiment.
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Systems Engineering Process

Stakeholder 
Analysis

Requirements 
Definition

Concept Generation, 
System Architecture, 

Functional Decomposition

Model & Physical 
Decomposition, Tradespace 

Exploration, Concept Selection

Design / Build / Test

System Integration, 
Interface Management

Verification & 
Validation

Transition / Lifecycle 
Management
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Overarching Probabilistic M&S Framework: 
Digital Engineering

Computational Modeling & Simulation

Computational M&S 
Emulation / Reduced-Order 

Modeling

Data Assimilation / V&V
(M&S and Empirical)

Sensitivity Analyses:
• Probabilistic Methods
• Numerical Optimization
• Error Propagation
• Capability Analysis
• Tradespace Studies
• Inverse Propagation
• Reliability-based design optimization

Aeroballistics

Structural 
Modeling

Thermodynamics Materials & 
Additive Man.

Cost 
Modeling

Throughput / 
Yield Forecast

Reliability 
Availability 

POFA

Computational 
Chemistry

‘Live’ Testing & DOE-based 
Empirical Modeling

Results: 
 Reliable, Robust, Optimized Products & Systems
 Credible and Defensible Engineering M&S Analytics
 Reduced Design Cycle Iterations; time to field
 ID’d opportunities to reduce manufacturing costs
 Reduced performance variation
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Planning
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Area of Focus

‘Live’ 
Testing

Empirical 
Model

Combined 
Model

M&S Surrogate 
Model

Stratified 
Simulation

Assimilation / 
Visualization

Decision & 
Action

• ‘Data Assimilation’ - integration of M&S and ‘live’ data

• How realistic and credible are the model predictions throughout the design space 
relative to estimated variation?

• Decision-maker can ID low-reliance (high-risk) regions of the design space relative to 
random variation and propagated error across simulated model data

• Approach: Ensemble Modeling, Crossvalidation, Dimension Projection, Monte-Carlo 
Filtering, Multidimensional Data Visualization
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Case Study

• Munition example (anonymized for operational security reasons):
―Key performance parameter:  long-range target engagement capability
―Engineering team executes pre-prototype M&S of various subsystems:
o Aero, structural, interior ballistics, lethality, MBSE/functional architecture, etc
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Aero Case Study - Background

• 6-DoF Aeroballistic model is developed to verify that tentative 
airframe design performs as intended across trajectory

• What happens to our ability to meet KPP (long-range target 
engagement capability, in terms of impact errors in the x- and y-
directions and velocity) when we vary initial velocity, launch 
disturbances in the x- and y-axis, and spin rate of the munition 
(Hz); given tentative design (canard/fin geometry, projectile 
geometry, CG, etc)?
―Resulting Velocity (velocity decay)
―Other unintended consequences to the system (pressures required to 

achieve velocity/range, and impact of those pressures on system reliability / 
parts fatigue)
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Case Study - Approach

• Objective:  Study the impact of varying Aero inputs on the 
outputs, then explore tradespace to determine aero solution 
which minimizes x- and y-dispersion errors, and maximizes 
downrange velocity retention

• How: Simulate the model in various scenarios to support a DOE-
based model emulator/surrogate model
―Can use emulator to rapidly execute what-if analysis, sensitivity analysis, 

optimization and robustness analysis
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Case Study - Analysis

• Simulation DOE

• Emulation / Empirical Model Fitting

• Numerical Optimization & Propagation of Error

• Monte-Carlo Simulation, Sensitivity Analysis & KPP validation
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Simulation DOE

• 400 run Sequential MaxPro Latin 
Hypercube Space-Filling DOE

• Colored by ‘Velocity Delta’ response   
(red = greatest velocity decay)

Input Variable Factor Units Low High Output Variable Response
x1 MV -- 0.8 1.0 y1 Delta Vel
x2 Vert Launch Dist Rad/sec -6 6 y2 Final Vel
x3 Horz Launch Dist Rad/sec -6 6 y3 Deflection Error (X)
x4 Spin Rate Hz 20 60 y4 Altitude Error (Y)
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Response Emulator

• Fit the simulation data emulator for each 
response using Gaussian Process Model (Kriging 
model w/ Gaussian correlation function)

• MV contributes the most variation to responses, 
and SR contributes the least

• Strong interaction effect between MV and 
Launch Disturbances
― ‘Hypersensitivity’ to launch disturbance as MV 

increases beyond ~0.95
Gaussian Process Model of Defl Error

Actual by Predicted Plot
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Fit using the Gaussian correlation function.

Nugget parameter set to avoid singular variance matrix.

Gaussian Process Model of Alt Error
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• Using Robust Parameter Design principles (related to ‘Taguchi 
methods’), Propagation of Error (POE) analysis involves taking 
the partial derivative of response function wrt ‘Noise’ variables 
to minimize transmission of variability to responses

• Numerical optimization - setting the optimization goals and 
constraints such that:

― Launch Disturbances set as ‘Noise’ variables, with N~(0, 1.5)
― Target zero value for Alt and Defl errors

― Maximize Final Velocity

― Target zero value for all partial derivatives (zero slope = flat/ 
insensitive regions)

• Key Takeaway: Robust-Optimal ‘sweet-spot’ setting is at MV = 
0.85 when SR = 40 (giving terminal velocity of 0.80), with some 
margin in MV

Robust Optimization
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• 20,000 Monte-Carlo simulations 
treat launch disturbances as random 
variables

• Downrange Dispersion Errors 
resulting from setting MV to 0.85, 
0.90, 0.95, and 1.00 

• Individual data points are colored by 
Velocity Decay (smallest to largest 
from blue to grey to red)

Dispersion Error MC Simulation

Graph Builder

Alt Error Prediction Formula vs. Defl Error Prediction Formula
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Case Study Outputs / Conclusions

• Results will inform:
―Tentative design and probability of meeting KPP

o Decreasing MV creates some performance margin wrt other performance parameters, and 
robustness/insensitivity to presence of system ‘noises’

―Decisions regarding other attributes at the system-level (target effects, 
structural reliability, etc) 

―Integration with other subsystem-level emulators to support system-level 
digital evaluation using hierarchical meta-model

o To overcome hypersensitivity to launch disturbances at higher launch velocities we can 
reconfigure projectile design (adjust CG to achieve better stability at higher MV, for example)

―Fusion of modeling data and predictions via emulator with ‘live’ test data at 
subsystem and/or system-level upon prototype design / build / test

o Visualization-based data assimilation (validation or calibration)
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