

RT-180: Extending Flexible Contracts for Mission Assurance and Reliability Assessment

PI: Prof. Azad M. Madni

USC Viterbi School of Engineering Systems Architecting and Engineering

Research Task / Overview

 Advance resilience contract methodology for closed-loop mission assurance.

Data & Analysis

Exemplar Problem:

A simple system comprising prime (P) and redundant (R) computers crossstrapped to sensor & actuator interfaces:

An initial Markov Model for a repairable system derived from invariant contracts might look like this:

Goals & Objectives

- Develop a probabilistic formal system model that enables incremental update of mission assurance assessment based on incoming sensor data
- Exploit combination of deterministic and probabilistic modeling, and reinforcement learning to strike an effective balance between flexibility and verifiability

Methodology

- Model system using a combination of:
 - Traditional contracts
 - Flexible contracts
 - POMDP
- Control flow model
- Swarm control architecture
- Iterative Bayesian belief update

Future Research

(S3)

There can be many possible states between failed and working for computers, sensors and actuators, but we might not know what these are – for simplicity, we add a single hidden state, H1 and continue analysis:

- Explore use of heuristics to dynamically modify POMDP policy
 - strictly formal/formulaic methods are insufficient to cope with real world complexity
- Pursue staged implementation
 - MDP on simple problem, POMDP on simple problem, in situ MA assessment on complex problem

Contacts/References

 Madni, A.M., Sievers, M., "A closed loop Approach to Mission Assurance Based on Flexible Contracts", submitted to INCOSE IS 2018