
SERC Doctoral Students Forum and SERC Sponsor Research Review, November 7 - 8, 2017

Towards Better Understanding of Conflicts and Synergies Among Software Quality Attributes By 
Analysis of Abundant Data

Pooyan Behnamghader
USC Center for Systems and Software Engineering

Future Research
• Difference between developers in terms of impact on software quality.
• Studies with dynamic analysis techniques and regression tests.
• Effect and intent of the changes on software quality.
• Software quality defect prediction models.

Goals & Objectives
• Helping organizations determine which divisions and project types have better or

worse quality; which quality attributes are being achieved poorly or well; and how
do these correlate with customer satisfaction and total cost of ownership.

• Helping project managers better understand which types of projects or personnel
contribute most to quality problems or excellence, and which types of project
events correlate with which types of quality increase or decrease.

• Helping developers continuously monitor software quality and improve software
maintainability.

• Helping acquisition programs evaluate system quality.

Research Task / Overview
• Understanding software quality evolution, and conflicts and synergies among

software quality attributes by analyzing impactful changes.
• Utilizing multiple programming analysis techniques to conduct multi-perspective

analysis of software quality.
• Capitalizing on cloud services to analyze revision histories of large families of open-

source software systems.
• Conducting large-scale replicable empirical studies.
• Providing interactive desktop and web interfaces to illustrate software quality

evolution.

Data & Analysis
Research Questions
• RQ1: To what extent do developers commit impactful changes?
• RQ2: To what extent and how do impactful commits break the compilability?
• RQ3: To what extent do impactful commits affect software quality attributes?
• RQ4: Should developers rely on a single quality metric as a change indicator?

Data Collection
Collected the metadata of all Apache projects via GitHub API
• Name, # of commits, programming language, and last update date
Subject system selection criteria:
• Java, updated in 2017, the main module exists, no nontrivial prerequisite for

compilation, at least 100 compilable different revisions, and less than 3K commits.
Scale of the analysis
• 3 programming analysis techniques, 9 metrics, 38 systems, 19580 impactful

commits and revisions, 643 impactful developers, 586 MSLOC, 15 years timespan.

How to Identify Impactful Changes?
Version Control System (i.e., Git)
• Tracks changes and contains fine-

grained information, such as when 
change occurs, how, and by who!

Commit-Impact Analysis
• Analyzing software quality before and 

after commits that change the source 
code of the main module of software.

How to Evaluate Change in Quality?
Static Analysis Techniques 
• Analyze software without running it.
Report Parsers
• Retrieve quality metrics from reports 

and store them in a unified relational 
schema.

How to Explore the Data?
Interactive Desktop and Web Interfaces.
• Evolution trend of a metric.
• Impact of each developer.
• Evolution graph of a metric. 
• Co-evolution of multiple metrics.

Methodology

How to Scale?
Automated Cloud-Based Infrastructure.
1. Retrieve a subject system’s meta-data (e.g., number of contributors) as well as its

commit history from GitHub.
2. Distribute hundreds of revisions (i.e. official releases and/or revisions created by

commits) on multiple cloud instances.
3. Run static/dynamic programming analysis techniques on each revision.
4. Collect and parse the artifacts generated by programming analysis techniques to

extract quality attributes.
5. Run various statistical analysis on software quality evolution.
The entire analysis workflow is automated.

Results’ Highlight
• On average, 48% of all commits impact the main module, and 69% of all developers

contribute to the source code in that main module.
• On average, 2% of the impactful commits are not compilable.
• Different quality attributes may change even if the code count does not change.
• Only 5.7% impactful commits change VL, 1.9% change SG, and 2.4% change FG.
• Although security metrics change less frequently, it is crucial to utilize them as they

can reveal the introduction of different kinds of security problems.

Contacts/References
References:
[1] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm. 2017. Towards Better Understanding 
of Software Quality Evolution through Commit-Impact Analysis. In 2017 IEEE International 
Conference on Software Quality, Reliability and Security (QRS). 251–262.
[2] R.Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm. 2017. How Does Contributors’ 
Involvement Influence Open Source Systems. In 28th Annual IEEE Software Technology Conf.
Contact Info:
• 941 Bloom Walk, SAL 327. Los Angeles, CA 90089
• +1 213 400 7256
• pbehnamg@usc.edu

Figure 1. A Software System’s Evolution. (Impactful commits are denoted in gray.)

Table 1. Software Quality Metrics

Figure 2. Simple Analysis Workflow

Table 2. Analysis Data Stored in Unified Relational Schemas
Figure 3. Evolution Trend of a Metric in a Subject System.

Figure 4. Impact of Developers on Software Quality 
Figure 6. Coevolution of Two Metrics in a Subject System

0 0 0 13

1

-1

0

Figure 5. Evolution Graph of a Metric in a Subject System

Figure 7. Workflow Architecture of Commit-Impact Analysis

Table 3. Empirical Study Setup and the Result of the Analysis for RQ1, RQ3, and RQ3

Table 4. Percentage of Const(X) \ Change(Y ) to Const(X). Const(X) is the number of impactful 
commits that does not change a quality metric X, and Change(X) is the number of impactful 
commits that change X.

dev_1 dev_2 dev_3

23.08.16 15.09.16 09.10.16 01.11.16 24.11.16 17.12.16 09.01.17 01.02.17 24.02.17 20.03.17

Commit Date

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

I
m

p
a
c
t 

o
n

 C
o

d
e
 S

m
e
ll
s

Figure 8: Code Smell Evolution in NASA-SYSTEM1

dev_1 dev_2 dev_3 dev_4

16.10.15 13.12.15 08.02.16 06.04.16 03.06.16 31.07.16 27.09.16 24.11.16 21.01.17 20.03.17 16.05.17

Commit Date

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

220

I
m

p
a
c
t 

o
n

 C
o

d
e
 S

m
e
ll
s

Figure 9: Code Smell Evolution in NASA-SYSTEM2

Tips to Avoid Introducing Compile Error 
When Contributing to Open Source 
Projects
Avoid using snapshot of dependencies!
Compile in a new environment:
• Contributing alone.
• Changing build files.
• Adding new files.
• Conducting large refactoring.
Don’t commit too early and too often!

Translating Research Into Practice
We recently delivered advanced tool
assessments tutorials to front line
acquisition engineers of a major
governmental entity.
This led to an in-depth analysis of the
quality aspects of an open source
software complex for decisions regarding
quality, safety, and security "sniffs" and
"taints" to assess an acquisition program
of an unmanned system.

Follow-up Study
“How Does Contributors’ Involvement 
Influence Open Source Systems” [2]. In 
this paper, we investigated whether 
variations in contributors level of 
involvement shows variation in their 
contribution type and its quality with an 
emphasis on technical debt.

mailto:pbehnamg@usc.edu

