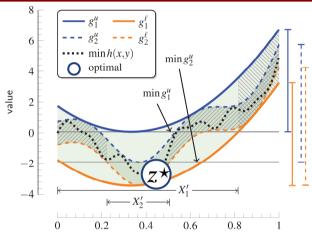

RT-181: A Model of Design as a **Sequential Decision Process**

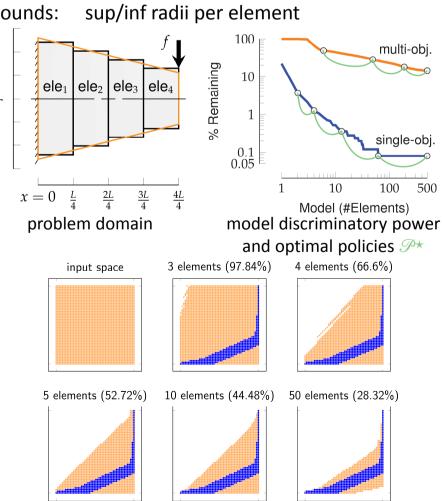
Simon W Miller & Michael A Yukish



Research Task / Overview

to treat design as a **Sequential Decision Process** whereby models are used to continually refine the design space with mathematical guarantees on discriminating the tradespace.

Data & Analysis

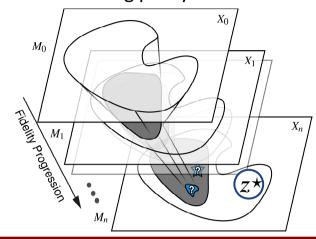


a **bounding model** provides two-sided estimate to a function by restricting the form of the lower fidelity models as $g_i^{\ell}(x) \leq \min_{\mathbf{v}} h(x, y) \leq g_i^{u}(x)$

example: 2 parameter 1D FEA problem

fidelity: discretization of the cylindrical body objective: minimize mass and tip deflection

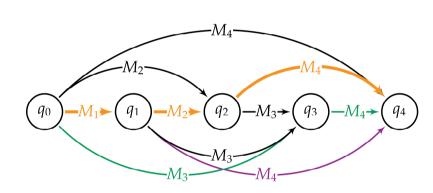
bounds:



controlled convergence of the original design space the non-dominated set with after modeling effort

Cost savings from optimal policy compared to one-shot exploration: $c_{so} = 0.99$, $c_{mo} = 0.74$

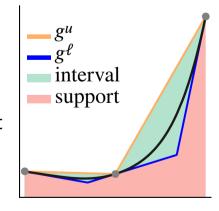
Goals & Objectives


- we seek to formally define design when viewed as a sequential decision process using:
 - 1. bounding models
 - 2. dominance criteria
 - 3. optimal modeling policy

Methodology

The Formal Model

- tradespace Z
- model set $M = \{M_1, \dots, M_m\}$
- consideration sets $\{Z_0, \ldots, Z_m\}$
- ideal point z*
- ullet cost c(i,j) of using M_j to move from Z_i to Z_j
- modeling policy $\mathscr{P} = \{M_{p1}, M_{p2}, \dots, M_{pm}\}$


Model Sequencing

Future Research

extension to general function forms

convex functions

- interpolation generates the upper bound
- tangent planes at points provide function support and the lower bound

Contacts/References

Simon W Miller swm154@arl.psu.edu Michael A Yukish may106@arl.psu.edu

Miller, S.W., Yukish, M.A., & Simpson, T.W., 2017, "Design as a sequential decision process: A method for reducing design set space Using models to bound objectives", Structural and Multidisciplinary Optimization

Unal, M., Miller, S.W., Chhabra, J.P.S., Warn, G.W., Yukish, M.A., & Simpson, T.W., 2017, "A sequential decision process for the system-level design of structural frames", Structural and Multidisciplinary Optimization

Penn State Applied Research Laboratory