

SERC ASRR Presentation: USC Systems Engineering Research

Azad Madni

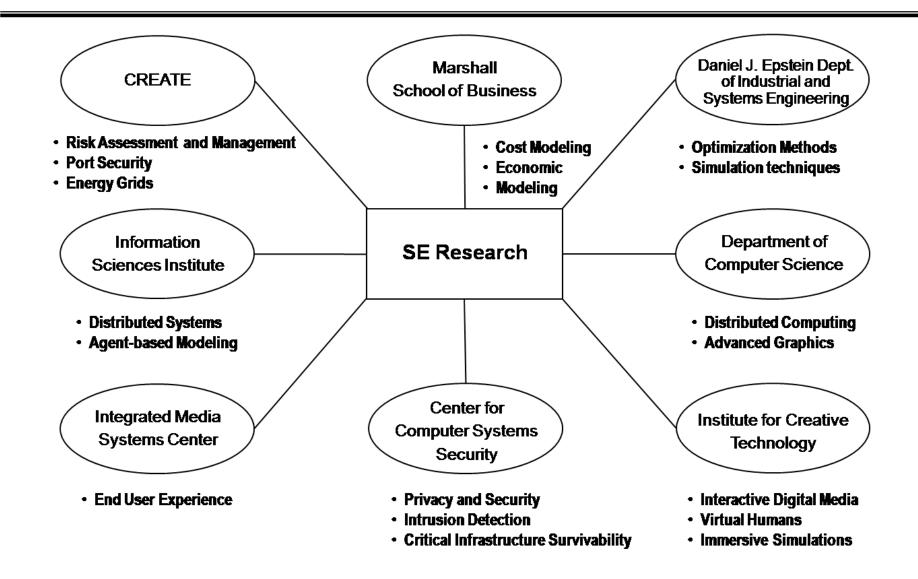
Professor and Director Systems Architecting and Engineering Program Viterbi School of Engineering University of Southern California

October 15, 2009

Outline

- USC SE Research Strategy
- Center for Systems and Software Engineering (CSSE)
- Systems Architecting and Engineering (SAE) Program
- Systems Engineering Transformation (SET) Research

- Research and develop SE technology addressing key future needs
 - Address leading-edge project needs (e.g., rapid capability fielding)
- Integrate multiple SE perspectives
 - Product, process, property, success models
 - Hardware, software, and human models
- Transition technology into practice (e.g., on programs)
 - Affiliates program, project support contracts
 - \$10 M/year: DoD SERC/other, DHS, NASA, NSF
- Grow future systems engineering leaders
 - MS-SAE, MSCS-SE, Ph.D., internships
 - Encourage student-driven research
 - Continually align education and research
 - Offer SE specialty in selected domains (aerospace, healthcare, ...)



Be a premier applied research organization in systems and software creation with specific emphasis on accelerating development and deployment processes and creating innovative approaches and architectures for integrating complex human/hardware/softwareintensive systems

USC-wide Collaboration

- Interdisciplinary Collaboration
- Stakeholder Value Satisfaction
- Emergence and Evolution
- Multiperspective Model-Based Framework
- Human System Integration
- Systems Architecting and Engineering

- Engage partners and affiliates in industry and government
- Focus on realworld problem
- Expand scope of collaboration from information exchange to collaborative development
- Exploit relevant theories
 - Win-win Theory W for collaboration
 - Theory of Creative Option Generation for decision making
- Supported by Multiperspective Model-based Framework
 - process models, product models, property models, success models

- Support complex negotiations in which rights and needs of stakeholders are accommodated in timely fashion
- Based on value-based theory and stakeholder win-win Theory W
- WikiWinWin used to identify and resolve issues and reach agreements
- Exploitation of Incremental Commitment Model
 - Organizes a system's life cycle around a series of Incremental Commitment milestones
 - Builds on both value-based process model and the spiral model

USC

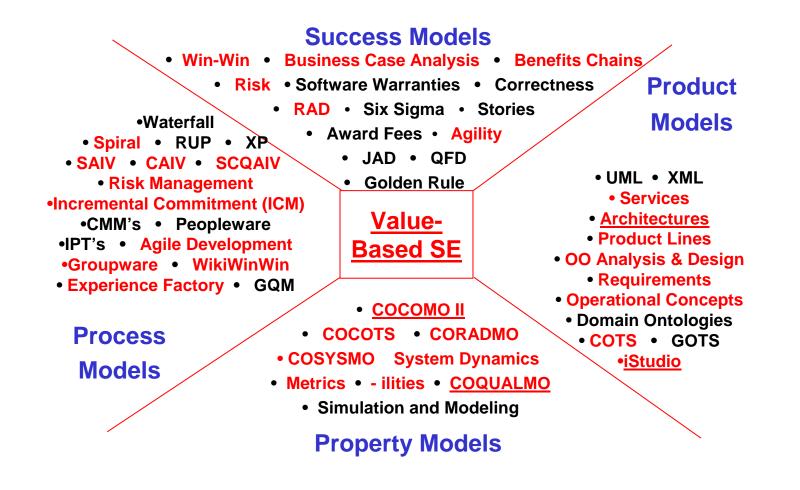
Current Win Condition

- Name: Budget for Development
- Category: <u>BudgetAndSchedule</u>
- Statement: Development costs should be \$0, including cost of COTS, excluding client time spent by client.

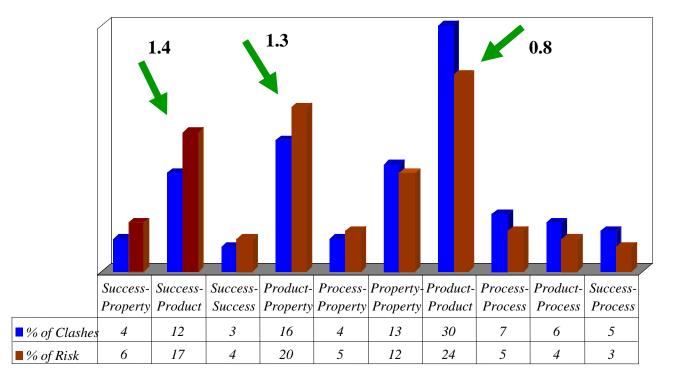
Identify Issues

<u>Name</u>	<u>Statement</u>	<u>Timestamp</u>	<u>Creator</u>	<u>Role</u>	<u>Provide</u> Options
Cost of COTS	There is a possibility that no free COTS product exists that would satisfy the requirements and have the desired stability	16 Mar 2007 18:14	<u>DaYang</u>	Developer	<u>enter</u>

List of Issues, Options, and Agreements

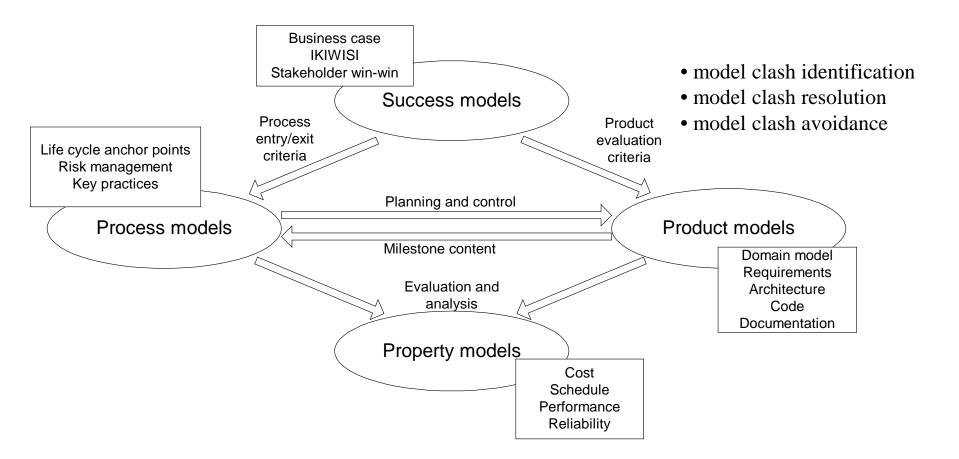

- ISSUE: Cost of COTS
 - o OPTION: The most suitable FREE COTS software will be used.
 - OPTION: <u>No COTS usage.</u>
 - o OPTION: If no COTS is expensive, I could pay up to \$1000 for COTS.
 - o OPTION: We find a suitable COTS, which costs \$200. [As Agreement=Yes]

- Adaptive, evolutionary, opportunistic processes
 - Surface requirements early through iterative prototyping and usage
 - Movement toward decentralized control
- Complex adaptive systems
 - Self-organization and emergent behavior
 - Socio-technical, geo-political, economic, behavioral, environmental considerations
 - Guided/influenced through incentives and inhibitors



Product Models

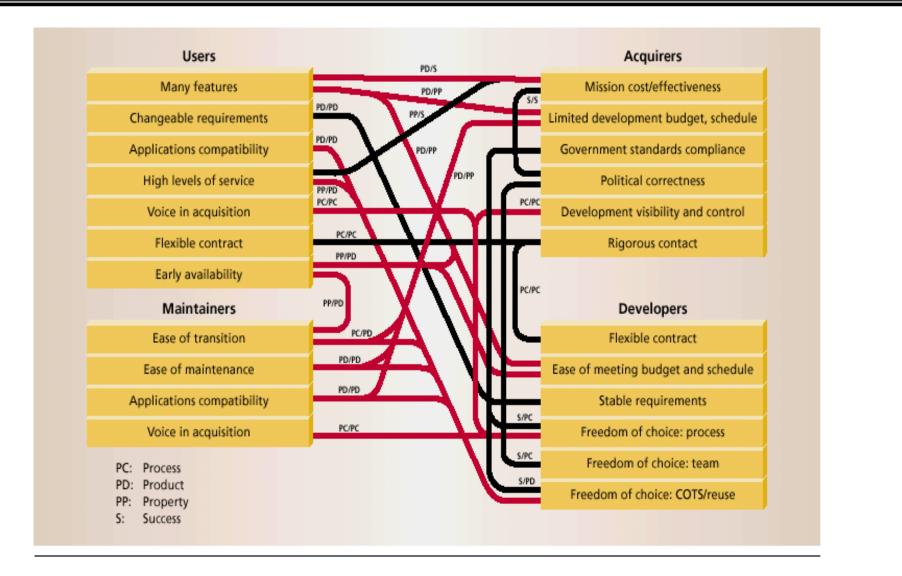
• Only 30% of model clashes; 24% of risk



• Model Clash: Incompatible assumptions among adopted models

Multiperspective Model-Based Framework

Each perspective informs and provides evaluation criteria for the other perspectives.



- Success model: Stakeholder win-win
- Product models: XTEAM for architecture definition and tradeoff analysis
- Process models: Incremental Commitment Model; systems of systems
- Property models: COSYSMO; security models

Model Clashes SpiderWeb: MasterNet

- Humans are critical to successful systems operations, yet ...
 - Human role generally addressed only as part of Front-End Analysis and CONOPS/UI design
 - System architects continue to focus on human and system characteristics in isolation, not together
 - Program Managers driven by schedule, cost, and weight considerations, not HSI
 - Human Factors professional unable to articulate HSI value to systems engineers
- Unwarranted assumptions about the human can lead to tragic accidents
 - Humans are not optimal information processors, they get fatigued, they don't multi-task well
 - Humans are creative, rarely exactly right, and not usually completely wrong
 - Human decision making is influenced by social and cultural norms
- A potential high payoff research vector is developing a methodology for facilitating the introduction of HSI considerations at appropriate points in the system lifecycle

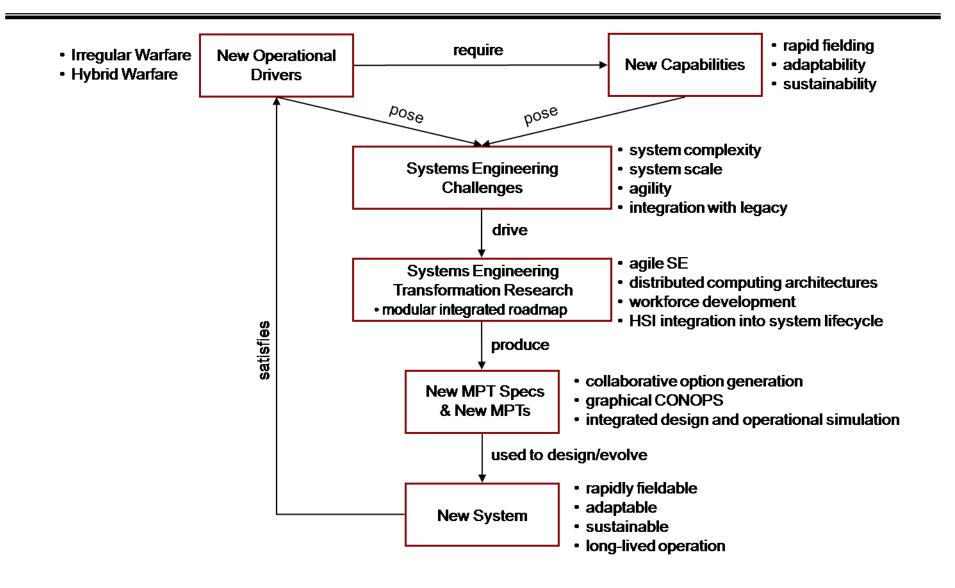
Source: Madni, A.M. "Integrating Humans with Software and Systems: Technical Challenges and a Research Agenda," *INCOSE Journal of Systems Engineering*, Vol. 13, No. 3, 2010.

- Informed by Eb Rechtin's pioneering insights in this field
- Systems Architecting and Engineering Program led by Azad Madni (Director) and Stan Settles (Co-Director)
- Emphasis on concurrently engineering products and processes, requirements and solutions, development and operations
- Combination of heuristic reasoning and mathematical optimization
- Balance economic and technical considerations
- Principles reflected in USC's value-based system and software engineering approaches

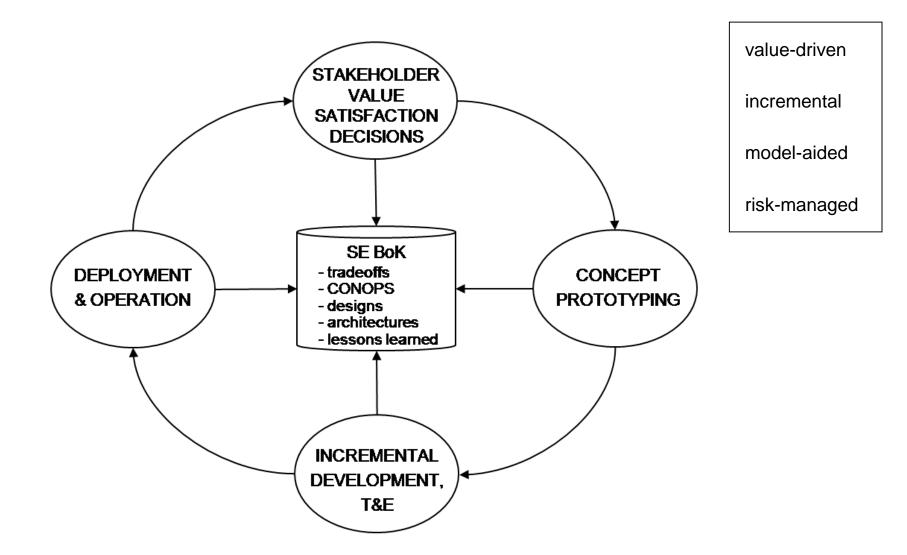
- Identify and exploit high payoff computing technologies that can transform systems engineering for the operational challenges of the 21st Century
- Exploit unique human capabilities (e.g., adaptive capacity) of a trained workforce when integrating humans with software and systems to dramatically enhance operational effectiveness
- Specify research thrusts along with success criteria to achieve these goals

Operational Drivers

• Irregular Warfare


- emphasis on D, I, and E in DIME
- center of gravity - indigenous population
- need to influence socio-cultural terrain
- non-state networks/actors embedded in civilian population
- focus on psychological effects and non-kinetic influence of "locals"
- difficult to define success criteria... but technology is a key differentiator

• Hybrid Warfare


- a blurring of modes of war, combatants, and the technologies that are brought to bear
- Traditional warfare with counter-terrorism and counter-insurgency operations

We cannot kill or capture our way to victory... – Secretary of Defense Robert Gates

SYSTEMS ENGINEERING SE Transformation Approach

© University of Southern California. All Rights Reserved.

- New Architectural Paradigms (complexity, scalability, adaptivity)
- Mobile and Context-aware Computing (temporal and spatial flexibility)
- Agile, Iterative, User-driven Processes (incremental feedback, larger user pool)*
- Dynamic Adaptation (maintain quality, utility and value in face of change)
- Correct by Construction Approach (lower integration time, costs)
- Incorporate Human-System Integration Methods (exploit human adaptive capacity) into system life cycle models (e.g., Incremental Commitment Model)
- Workforce development (leadership, sociocultural awareness, economics of SE)

^{*} Madni, A.M. "Agile Systems Architecting: Placing Agility Where it Counts," Conference on Systems Engineering Research (CSER), 2008.

Summary

- USC research strategy is geared to meeting operational needs of the 21st century
- Our multi-perspective modeling framework is intended to uncover and correct model "clashes" thereby reducing development and integration risks
- CSSE has wide reach within the Viterbi School of Engineering, Marshall School of Business, and Rossier School of Education
- SAE program is continuing to develop courses that incorporate our research findings and that respond to Defense procurement, acquisition, engineering, and operational needs

Dr. Azad Madni

- Professor, Epstein Department of Industrial and Systems Engineering
- Director, Systems Architecting and Engineering Program
- Research Interests:
- intelligent systems, adaptive architectures, model-based systems engineering, agile systems engineering, game-based simulation, cognitive engineering
- Awards & Honors:
- 1999 Tibbetts Award winner for California, SBA
- 2000, 2004 Developer of the Year Award winner from the SCSC
- 2000 Distinguished CEO of *ComputerWorld's* Top 100 Emerging Companies
- 2006 C.V. Ramamoorthy Distinguished Scholar Award, SDPS
- 2008 President's Award, IDPT Biennial World Conference, SDPS
- Fellow of IEEE, INCOSE, SDPS, IETE, Assoc. Fellow of AIAA
- Marquis' Who's Who in Science and Engineering, Who's Who in America.
- Research Sponsors:
 OSD, DARPA, DHS S&T, HSARPA, MDA, AFRL, AFOSR, RDECOM, CECOM, TATRC, ARI, AMCOM, HEL, ONR, NRL, SPAWAR, NAVSEA, NAVAIR MARCOR, PMTRADE, STRICOM, NIST, DoE, and NASA
- Education:

- B.S., M.S. and Ph.D. degrees in engineering from UCLA
- Graduate of AEA/Stanford Institute Program for Senior Executives

Thank you for your kind attention.

© University of Southern California. All Rights Reserved.