

A System Model for Managing Requirement Trace Matrices via Statistical Artifact Change Analysis

Benjamin J. Deaver Advisor – Dr. LiGuo Huang Department of Computer Science and Engineering Southern Methodist University

Research Problem

- The Requirements Traceability Matrix (RTM) is utilized to:
 - Link deliverables to requirements
 - Identify Overlap
 - Ensure fulfillment
- Critical Change Management Tool
 - Highly effective in identifying collateral impact of change
- In dynamic landscapes, the RTM can easily fall out of a known validity
 - Rapid Change

Motivation

- One of the major challenges facing the implementation of traceability is the cost.
 - Systems grow in size and complexity
 - Systems become more dynamic
 - Manual generation of RTM is a tremendous undertaking
 - When the is manual generation required?
 - "After each change" may not be feasible.
 - "Allowing multiple changes may result in missed overlaps


Motivation (cont)

- Dynamic Landscapes
 - Rapidly changing requirements
 - New requirements being generated
 - Concurrent development being implemented
 - Identifying Overlap before problems arise
- Growth in Size and Complexity
 - Over time, a system being constructed has a tendency to grow larger.
 - With growth comes complexity.
 - Size and Complexity can generate overlap and reuse.

Motivation (cont)

- What is the value of knowledge about the changing Requirements Traceability?
 - We can certainly understand the cost associated with the RTM.
- The value of understanding the impact of change to a System / System of Systems
- The value of understanding the impact of change to a RTM

Background

- How is the problem being solved today?
 - Many different areas of research focus on the effective utilization of the RTM.
 - Not a significant amount of research built around determining confidence in the RTM and determining the need for regeneration.
- Automated RTM Management
- Manual Generation and Management
- IR Techniques

Related Work

- Automated RTM Management
 - Software with the purpose of maintaining the links between requirements and deliverables.
 - Effective for the mining of information from an RTM.
 - Ineffective at generating the RTM.
 - Highly ineffective at identifying the effectiveness of the RTM as systems evolve without additional assistance.

Related Work

Manual Generation of the RTM.

- Intensely time consuming.
- Requires high levels of expertise and knowledge of the system in question.
- Based on the effort required for generation, a risk of being outdated before full generation exists.
- Research is being conducted in the area of speeding the delivery of the RTM.
 - Significant increases, but still significant effort.
 - Value Based RTM Generation.

Related Work

Information Retrieval Methods

- Several areas and methods are being researched
- Latent Semantic Analysis of artifacts
- Clustering of artifacts
- Effectiveness varies greatly
 - ~50% precision and ~50% recall are median results.
 - Precision or recall can be increased at the expense of the other.
 - Not effective enough to make decisions regarding change management.

New Technical Idea

- Identify the confidence in an RTM based on changes since generation.
 - All changes will be classified according to some generated taxonomy of change.
 - Based on this taxonomy of change, what changes will have the greatest impact on the RTM?
 - What combinations of changes will indicate a loss of confidence in the RTM?

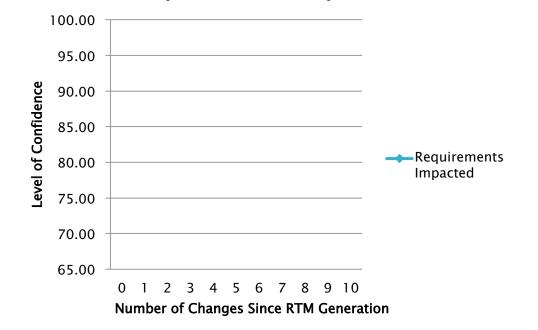
New Technical Idea (cont)

- Taxonomy of Change
 - All change can be broken into set categories.
 - Taxonomy may be different for
 - Software Engineering
 - Systems Engineering
 - Systems of Systems Engineering

New Technical Idea (cont)

- Requirements Engineers are familiar with
 - Deliverables
 - Requirements
 - The RTM linking the two
- Based upon the changes applied since the last generation of the RTM
 - Changes are classified via their respective Taxonomy of Change
 - The order of change may have an impact as well
 - Interesting follow up questions generated from this model.

New Technical Idea (cont)


- Develop a tool which will mine changes from version management systems and identify changes.
 - Attempt to automate the classification of change in a taxonomy of change.
- Results in a system which will

- Rapidly identify the types of changes taking place
- The order of the changes taking place
- The statistical likelihood of the RTM being impacted by change
 - Confidence in the RTM is derived from this data.

Research Hypothesis

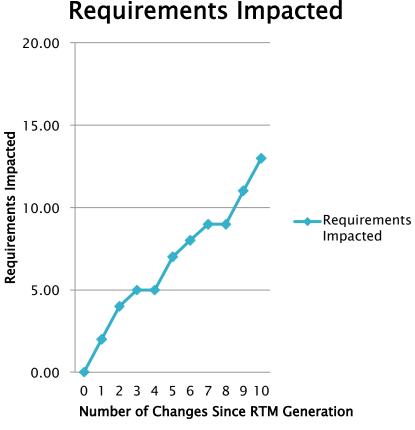
- Based on the number of changes seen in a system, the confidence in the RTM will diminish
 - Confidence being the likelihood of correctness
 - We expect different types of change to have different impact

Requirements Impacted

Research Approach

- Utilize OSS projects with a substantial version history
 - Gantt
 - ReactOS
 - jHotDraw
- Utilize validated traces as a starting point for further analysis.
- Identify and classify changes between known versions.
- Retrace at major (stable) releases.
- Based on the impact of changes between traced versions, we will derive the statistical model.

Research Approach


- Utilize Traces Generated by Institute for Software Engineering and Automation
 - Reuse methods for creation of additional traces for additional releases of software
 - Working closely with Dr. Alexander Egyed
- Utilize Software Engineering Graduate
 Students to create Taxonomy of Change
- Tool to Automatically Mine Changes and classify them.

Evaluation Methods

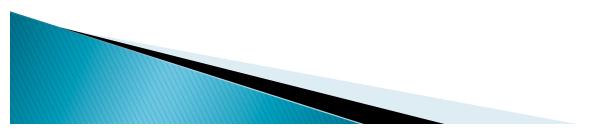
- Examine the totality of changes between versions.
 - Based on the types of changes that have taken place, evaluate the total impact.
 - Identify the impact of individual changes.
 - Based on the types of change identified, identify the impact of changes.
- Other interesting questions.
 - Do some changes appear together?
 - Are certain combinations more impactful?
 - At some number of changes, does it no longer matter what kind of change is being made?

Preliminary Results

- Requirements for tracing have been identified and documented in all three OSS projects.
- Initial Traces have been collected.
- Data gathering exercises have begun with Gantt versions.
 - 2.0.8 -> 2.0.9
 - 2.0.9 -> 2.0.10
- Examination of change repository data for projects is being conducted.

Preliminary Results

- Our research is still in the preliminary phases.
 - Initial examination of results (Gantt) is scheduled for the end of 2011.
 - Taxonomy of change has been identified.
 - Frequency and Impact of different types of change is being analyzed.
 - Original hypothesis will be tested based on collected Gantt data.
 - Results of this experiment will drive the continuation of research in this area.


Potential Impact (SE & SoS)

- Modification of taxonomy will allow for rapid scaling between:
 - Software Engineering
 - Systems Engineering
 - Systems of Systems Engineering
- Knowledge of RTM Reliability
- A greater understanding of the impact of specific types of change to a System / SoS.
- A greater understanding of the impact of specific types of change to the RTM

Conclusion & Future Work

- Few conclusions at this time.
 - The Taxonomy of Change has been established.
 - Initial research shows that all change can be accounted for.
 - New categories may be uncovered with additional research.
- Future Work
 - Should all change be included in the research?
 - Changes that are later reversed?
 - Delta of change to a version is 0, but what if other changes occur between the initial and reversal?

Questions?

Follow up questions or comments can be directed to Benjamin Deaver

bdeaver@smu.edu

