
A System Model for Managing Requirement Traceability Matrices via Statistical Artifact Change Analysis
Benjamin J. Deaver and LiGuo Huang, Southern Methodist University, Dallas

Introduction and Motivation

The system Requirement Traceability Matrix (RTM) is primarily used for ensuring

that all requirements are fulfilled by the system artifact deliverables and the

management of change to deliverables with respect to impact on other systems. In

the systems engineering and system of systems (SoS) engineering landscapes, the

RTM is a tool that is useful at time of creation, but requires constant maintenance in

a frequently changing landscape to maintain the original level of validity. The

dynamic nature of systems and SoS engineering landscapes requires that a RTM be

constantly regenerated in order to maintain this original level of accuracy. However,

in highly complex and rapidly changing systems, this becomes an unrealistic

proposition. The motivation of our research is the development of a system model

which will statistically determine the dependability of the RTM based on the types

of changes that have taken place since the most recent generation of the RTM,

thereby providing a level of dependability to change management groups working

with systems and SoS developers.

As systems grow in size and complexity, the underlying burden of maintaining the

RTM grows as well. Over time, the regeneration of the RTM for a dynamic system

may become too cumbersome a task to perform regularly. It is the goal of our

research to provide a model which will allow for us to better understand the impact

of a type of change to and existing RTM in a system being actively modified.

Summary

We create a taxonomy of change based on the observed change patterns presented

in three separate Open Source Software projects currently in development. The

three projects we are currently working with are:

1) Gantt

2) jHotDraw

3) ReactOS

For each of the changes observed, several pieces of meta data are collected for

examination. The requirement(s) affected, the order of change in relation to other

changes, as well as the underlying classification of the change according to the

previously identified taxonomy of change will be utilized in the generation of our

statistical model of change impact to the RTM.

Once all changes between specific versions of code for specific requirements have

been identified as they relate to a set of requirements which are being traced, we

will be able to generate the RTM for all identified static points of code. For our

testing purposes with the Gantt project, this will result in three RTMs being utilized

at versions 2.0.8, 2.0.9, and 2.0.10. The changes between each version will allow

us to examine the individual traces between artifacts for changes and begin the task

of building a statistical model which will allow the prediction of the impact of

different changes over time to the RTM.

The above data identifies a set of two sample changes as seen

between versions 2.0.8 and 2.0.9. While a change itself is

unique and seen exactly one time, the type of change being seen

is not unique. Those types of change, “New Method” and a

subsequent “Calling Dependency Change” are identified and

associated to the meta data of the identified change for further

evaluation.

The identification of the specific taxonomy of change has been

performed previously to this experiment with the assistance of a

significant number of graduate students reading through code

changes. The suggested taxonomy of change for the Software

Engineering Domain of RTM impact analysis has been limited

to:

1) Method name change

2) Method parameter change

3) If Statement Changes

4) Variable Changes

5) Constraint Changes (public, private, protected)

6) Calling Dependency Changes

7) New / Deleted Method

As changes are identified between versions of the Gantt

system, individual changes must be examined in greater detail

in order to properly collect the meta-data needed for further

analysis.

Examinations of individual changes will need to be done in

greater detail in order to truly understand the impact of the

change to the requirement(s) in questions.

As the requirement(s) being affected are identified, we can

begin to understand the effect of overlap and any other

possibly affected requirements in the product being evaluated.

The likelihood of impact is a purely subjective analysis being

performed by individuals who are experienced in creating

requirements traces. The impacted requirement(s) can be

derived from the trace data captured at each of the stable

versions.

Sample Change Patterns Identified between Code Versions

PROCEDURE

1. Identify the taxonomy of change for a given domain (Systems Engineering,

SoS Engineering, Software Engineering).

2. Identify and classify changes between static versions of the product.

3. Generate Requirements Trace Matrixes for each static version of the product

being analyzed.

4. Evaluate the impact of changes to the product against each of the different

Requirements Trace Matrixes.

5. Utilize the collected data to develop the statistical model for RTM

confidence based on applied changes to the RTM.

The model is a base effort that is intended to be customized for domains of

engineering. Should the need for a model in the SoS space exist, it is

expected that the taxonomy of change and underlying model values for

Systems or Software Engineering will not fill this role effectively. The

process is expected to be cross-domain.

The number of requirements affected by a number of changes in a system tends to increase at a rate greater than 1-1.

We will normally see in a system that there is overlap between requirements and deliverable elements. Our

observations indicate that this relationship becomes more prone to overlap as systems undergo increased iterations of

development. This supports our original suppositions that the underlying value of the Requirements Traceability

Matrix increases as the system becomes more complex. However, the underlying effort often precludes the

development of the additional versions of the RTM as the value becomes highest.

It is our hope that the statistical model of impact to the Requirements Traceability Matrix will allow for the empirical

analysis of change to determine the most effective time for generation of a new Requirements Traceability Matrix,

thereby offsetting some of the effort involved with the generation by capitalizing on the highest value attained.

Our initial dataset for evaluation is taken from the Gantt Open Source

Software Project (http://www.ganttproject.biz). The initial trace data

has been provided to us by Dr. Alexander Egyed at the Institute for

Systems Engineering and Automation at Johannes Kepler University.

Additional traces of requirements to code for subsequent Gantt versions

are being created using similar methods to the original collections

performed by Dr. Egyed and other researches initially involved in the

tracing of the Gantt project.

In the Requirements Traceability Matrix for Gantt, the requirement

being traced is identified as a column header. The individual classes

containing executable code are the rows. For each requirement, the

called classes are identified by a 1 (this class was called) or a 0 (this

class was not called). This is the format of the stored Requirements

Trace Matrices for the Gantt Project.

Requirement Traceability Matrix – Gantt Open Source Software Project

REFERENCES

Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A., "Information Retrieval Models for Recovering

Traceability Links between Code and Documentation", in Proceedings IEEE International Conference on

Software Maintenance (ICSM'00), San Jose, CA, October 11-14 2000, pp. 40-51.

Egyed, A. A Scenario-driven Approach to Traceability. In Proc. of the 23e ICSE p. 123-132, Toronto,

Ontario, Canada, May 12-19, 2001.

Egyed, A., Biffl, S., et al. A Value-based Approach for Understanding Cost-benefit Trade-offs During

Automated Software Traceability. In 3rd Int'l Workshop on Traceability in Emerging Forms of Soft Engr. p.

2-7, ACM Press: Long Beach, CA, 2005.

Heindl, M. and Biffl, S.: "A Process for Value-based Requirements Tracing - A Case Study on the Impact

on Cost and Benefit," Proceedings of the European Software Engineering Conference and Foundations of

Software Engineering (ESEC/FSE), Lisboa, Portugal, September 2005.

Heindl, Matthias, and Stefan Biffl. A Case Study on Value-Based Requirements Tracing. Proc. of the 10th

European Software Engineering Conference. Lisbon, Portugal, 2005: 60-69.

Kannenberg, A., Saiedian, H. Why Software Requirements Traceability Remains a Challenge. CrossTalk,

Vol. 22, No. 5, 2009, p. 14-21. Palmer, J.D. “Traceability.” Software Requirements Engineering. Richard

H. Thayer and Merlin Dorfman, eds. New York: IEEE Computer Society Press, 1997.

R. Wieringa, C. Ebert, Guest Editors’ introduction: RE’03: practical requirements engineering solutions,

IEEE Software 21 (2004) 16–18.

The Value of the Requirements Traceability Matrix

Kannenberg et al identify the underlying necessity of the Requirements Traceability Matrix and the underlying effect on

project management, process visibility, verification and validation, as well as project maintainability. Over time, the

Requirements Traceability Matrix provides significant insight in to the internal workings of the relationships between

requirements and deliverable artifacts.

As systems grow in size and complexity, the ability of project managers to maintain insight into the internal workings of the

project relationships is diminished. Eventually, the effort required to maintain such relationships is too great for the

relationships to be effectively maintained. However, as the complexity of the effort increases, the need for the additional

insight into the relationships between requirements and deliverables as well as the overlap seen between them becomes more

important, as the overlap can grow in scope.

Impact to Systems Engineering

Over time, we anticipate seeing several specific impacts to Systems Engineering and, subsequently, Systems of Systems

Engineering as well as Software Engineering. After examining the types and availability of trace data, based on our proof-of-

concept study we envision that this research will positively impact the domain of systems engineering at many levels. As the

taxonomy of changes can be modified for the scope under investigation, it is essentially a scalable solution that will be

applicable and useful for requirement traceability management from the scope of individual system to the SoS.

Specific impacts include:

1) A comprehensive understanding of the types of changes which impact a system the most. The taxonomy of change

will classify the types of system implementation changes. While all changes impact a system, some will

undoubtedly impact the system more than others. The knowledge of the level of impact associated with

change types will be beneficial to system or SoS change management during development and evolution.

2) A systematic vision on the impact of system changes to the RTM. While an RTM may exist within the parameters

of acceptable validity before a change is introduced, it will be possible to predict the impact of the next change

to the RTM validity, thereby proactively driving regeneration of the RTM if required. This will reduce the

effort to having a valid RTM as well as reduce the speculation of RTM validity at any given time.

3) Knowledge of RTM dependability. The RTM is assumed to be correct at a time t = 0. Based on the number and

types of changes that have been applied since t = 0, what is the dependability of the RTM while being used to

manage future change?

The potential for additional interesting questions exists as well. Value based effects, the ability to affect the usefulness of IR

methods for automated RTM generation, and other impacts on RTM studies that can benefit from a knowledge of the impact

of change will certainly yield interesting research opportunities moving forward.

Class
From

Version

To

Version
Change Pattern Description of Change

CalendarFactory.java 2.0.8 2.0.9 New Method
2.0.9 Contains new method newCalendar(). Does not exist

in previous versions.

WeekendCalendarImpl.java 2.0.8 2.0.9
Calling Dependency

Change

2.0.9 Code calls new CalendarFactory.Java class for calendar

creation. Calendar object being created remains the same,

only the method of creating changes.

Change Pattern Calling Dependency Change

Class WeekendCalendarImpl.java

From Version 2.0.8

To Version 2.0.9

Description of Change 2.0.9 Contains new method newCalendar(). Does not exist in previous versions.

Impact

Black box impact - none

White box impact - New method of creating a calendar object utilizing factory class

Reqs. Impacted

2: Maintain Task Properties (high likelihood of impact)

10: Change Task Begin/End Times manually with user changes (high likelihood of impact)

11: Change Task Begin/End Times automatically with dependency changes (high likelihood of impact)

0.00

5.00

10.00

15.00

20.00

0 1 2 3 4 5 6 7 8 9 10

R
eq

u
ir

em
en

ts
 I

m
p

a
ct

ed

Number of Changes Since RTM Generation

Requirements Impacted

Requirements Impacted

http://www.ganttproject.biz/
http://www.ganttproject.biz/
http://www.ganttproject.biz/
http://www.ganttproject.biz/
http://www.ganttproject.biz/
http://www.ganttproject.biz/
http://www.ganttproject.biz/

