
Capturing Knowledge in an
Integration Matrix

Bill Rouse*, Doug Bodner*, Nenad Medvidovic+,
Ivo Krka+, George Edwards+, Daniel Popescu+, Jo Ann Lane+

*Georgia Institute of Technology +University of Southern California

RT-25
Net-Centric Requirements

Management

University of
Southern
California

Georgia
Tech

Contact
Ivo Krka (krka@usc.edu), http://www-scf.usc.edu/~krka/
Department of Computer, University of Southern California, 941
W. 37th Place, Los Angeles, CA 90089, USA

•  Capture knowledge in a simple and straightforward way
•  Leverage lessons learned to quickly drill down on a small set of integration options
•  Identify potential challenges early

Desired properties
and outcomes

• Quality goals and non-
functional properties

•  Integrated system
capabilities

• Required features

Alternative and recurring design options

• Patterns
• Styles
• Data management solutions
• Combinations of COTS products

Relationships between options
and outcomes

• A concise symbol (+/-) or rank (1 – 10)
• A link to textual explanation of the

relationship (rationale and past
experiences)

Constructing an Integration Matrix

•  Define design options and solutions that recur
often in the given domain or organization

•  Define general or domain-specific properties of
interest

•  Establish the effect of a design option on a
property of interest

•  Capture rationale/knowledge

Using an Integration Matrix

•  Determine the primary properties of the planned
integration

•  Summarize the positives/negatives
•  Eliminate low-value design options
•  Weigh tradeoffs between high-value options,

while using the documented rationale,
knowledge, and prior experience

Design options and outcomes
tailored for different organizations
and domains
• Health care information systems
• Enterprise databases
• Intelligence and sensor fusion

Example: Integration Styles

Integration Style =
 Connector Roles + Topology + Linkage

Mechanisms

Integration
styles vs.
Properties

Topology Linkage Connector
Hub and
Spoke

Shared
Bus

Shared
Data

Data
Streamin
g

Adapter Arbitrator

Secure - o - o o +
Data intensive - - + + o +
Data
consistency

+ o + - o +
Interaction
protocols
incompatible

+ o + o + o

Reliable - + - o o +
Real time - +/- + + o +
Always
available

- o - o o +
Scalable - + - o o +
Caching + + + - o +
Distributed
transactions

+ + + o o +

Hub becomes a bottleneck for high data volumes

Shared bus provides delivery guarantees

Shared data repositories are difficult to scale

http://softarch.usc.edu/wiki/doku.php?id=integration_style_table:start

