

Identifying the Requirements and Design Variables for New Aircraft Considering Fleet-Level Objectives Under Uncertainties

By

Mr. Satadru Roy 4th Annual SERC Doctoral Students Forum November 16, 2016 20 F Street NW Conference Center 20 F Street, NW Washington, DC

www.sercuarc.org

• Research Questions:

- Can we identify a quantitative approach to determine the "right requirements" for a new system?
- Can we concurrently optimize multiple systems?
- Can this approach address multi-domain uncertainties?

• Goals & Objectives:

Develop decision support framework that:

- Assists decision-maker or acquisition practitioner to identify new system requirements that improve (maximize) system-level objective
- Allows new system to operate along with the existing system
- Optimizes new system with respect to the system level objective (in this presentation, airline profit)
- Addresses uncertainties arising from various factors and uncertainty propagation

Introduction and Motivation

- In reality, aircraft flies to different operating routes together with other existing aircraft of the airline
- Leads to a sub-optimal aircraft design with respect to the fleet-level objective

Source: http://adg.stanford.edu/

Aircraft that the airlines would like to buy is the one that is optimized with respect to its fleet level objective

Source: airliner.net

& ASTRONAUTICS

 Further, most complex systems design using deterministic models either chooses to ignore uncertainty or uses *a priori* margins or safety factors to address uncertainty

- Uncertainty in operations
- Uncertainty in observed system performance
- Uncertainty in design parameters
- Uncertainty arises from different domains
- Interacts with sub-systems
- Need to capture this uncertainty propagation within the system

- Aircraft Design Discipline:
 - Typically, design commercial aircraft for minimum fuel burn or operating cost
 - Reduction in fuel burn started to plateau in the last decade
 - —NASA's Subsonic Fixed Wing (SFW) project investigating novel aircraft configurations¹
- Airline Allocation Discipline:
 - One of the first application of linear programming – Airline allocation²
 - Led to the foundation of fleet assignment problem (FAP)
 - Forms the back-bone of today's state-of-the-art tools used by airlines^{3, 4}

Source: D Rutherford and M Zeinali. Efficiency trends for new commercial jet aircraft 1960 to 2008. Technical report, The International Council on Clean Transportation, 2009

AERONAUTICS & ASTRONAUTICS

- Independently, aircraft design and airline allocation are well researched
- Considering any one discipline alone -Not sufficient
- Need to combine both disciplines

^[1] Christopher E. Hughes. An overview of the NASA fundamental aeronautics program subsonic fixed wing project and ultra high bypass partnership research goals. Technical report, NASA, 2013

^[2] A. R. Ferguson and G. B. Dantzig. The allocation of aircraft to routes-An example of linear programming under uncertain demand. Management science, 3(1):45–73, 1956

 ^[3] R. Subramanian, R. P. Scheff, J. D. Quillinan, D. S. Wiper, and R. E. Marsten. Coldstart: Fleet assignment at Delta Air Lines
 [4] S. Kontogiorgis and S. Acharya. Us Airways automates its weekend fleet assignment

- Among the fewer works that combine the two disciplines MDO motivated decomposition approach within the context of System of systems^{1,2,3,4} – Starting step
- Approach decomposes the large MINLP into three subspaces
 - Top level space: A small Mixed Discrete Non-Linear Programming (MDNLP)
 - Aircraft design subspace: A Non-Linear Programming (NLP)
 - Airline allocation sub-space: A Mixed Integer Linear Programming (MILP)

Source: Ref. [1]

November 16, 2016

^[1] Muharrem Mane, William A Crossley, and Antonius Nusawardhana. System-of Systems inspired aircraft sizing and airline resource allocation via decomposition. Journal of Aircraft, 44(4):1222–1235, July 2007

^[2] Daniel A. DeLaurentis, William A. Crossley, and Muharrem Mane. Taxonomy to guide systems-of-systems decision-making in air transportation problems. Journal of Aircraft, 48(3):760–770, May 2011

^[3] Muharram Mane and William A Crossley. Allocation and design of aircraft for on-demand air transportation with uncertain operations. Journal of aircraft, 49(1):141–150, 2012

^[4] Nusawardhana. Dynamic Programming Methods for Concurrent Design and Dynamic Allocation of Vehicles Embedded in a System-of-systems. Purdue University, West Lafayette, IN, 2007

Optimization-based Approach: Uses Sequential Decomposition Strategy

Objective

Maximize fleet level expected profit

• Variables

- New aircraft requirements (design range, seat capacity)
- New aircraft design variables (NLP: Nonlinear Programming)
 - Aspect ratio, taper ratio, wing sweep, engine thrust etc.
- Allocation variables (MIP: Mixed integer programming)
 - Trips, passengers carried on a particular route

• Constraints

- Passenger demand
- Aircraft performance (takeoff distance, landing distance etc.)
- Fleet operations (maximum operational hours, number of each aircraft types etc.)

Sequential Decomposition Approach

- Reliability-based design optimization (RBDO) formulation to handle uncertainty in new system design
- Descriptive sampling approach to handle *uncertainty in passenger demand*
- Propagation of uncertainty from aircraft sizing subspace
 - -Performance of new aircraft is uncertain
 - -Coefficients in allocation problem have distributions
- Used a 'Robust Optimization' approach
 - Interval Robust Counterpart (IRC) formulation: Optimize considering the nominal and worst-case values of uncertain parameters within a pre-defined tolerance limit

^{*}Work by Parithi Govindaraju, Graduate Student, School of Aeronautics and Astronautics, Purdue University

• A notional 31-route network airline with hub at Memphis

- Airline has 7 different aircraft types currently in its fleet (blue bars)
- User-determined 5 new aircraft to be acquired (red bar)

Design variables at top level problem for enumeration

Lower

limit

Upper

limit

- Uncertain parameters characterized via scaling factors with triangular distributions
- Aircraft performance predictions follow distributions

Mode

Uncertain Parameters (ξ)	Lower Bound	Default	Upper Bound
C _{D0} Multiplier [non-dim]	0.95	1	1.05
Oswald Efficiency Factor [non-dim]	0.95	1	1.05
Thrust Specific Fuel Consumption Multiplier [non-dim]	0.95	1	1.05
Passenger Weight [lbs]	90	165	220

^{*}Work by Parithi Govindaraju, Graduate Student, School of Aeronautics and Astronautics, Purdue University SDSF 2016 November 16, 2016

Operational Uncertainty in Passenger

Demands

PURDUE

AERONAUTICS & ASTRONAUTICS

- Uses BTS data to sample passenger demand for the Monte-Carlo simulation
- From this, treat future daily passenger demand as uncertain
- Perform quarterly allocation to capture seasonal variation in passenger demand

Preliminary Expected Fleet Profit

Results

Design variables at top level problem for enumeration

- Green bar denotes baseline fleet with no new aircraft type-X in use
- 75 seats has higher expected profit
- 75 seats with 1200nmi design range leads to highest fleet expected profit

Result: Design-Allocation subspace

' AÓI

Optimal Design Variables Top Level (aircraft requirements) Source: Delta Cargo Design Range [nautical miles] 1200 Allocation: First Quarter Seat Capacity 75 **Aircraft Design Subspace** 6 Aspect ratio 12.0 Number of trips Taper ratio 0.3 4 Thickness to chord ratio 0.095 664.76 Wing area [sq. ft] Wing sweep (LE) [deg] 13.22 Ω 28° 32° 38° 10° 18° 43° 45° 45° 45° 45° 160 3 2000 Thrust per engine [lbs] 9351 Route distance [nautical miles]

- Result resembles a Embraer 175 type aircraft*
- Optimized with respect to this airline network
- B757-300
 A320-100
 757-200
 A319

 DC-9-50
 DC-9-30
 DC-9-10
 AC-X-New
- Acquisition practitioner seeks customized aircraft tailored towards their operational behavior
- Aircraft manufacturer wants to sell aircraft to multiple customers Changing to a multi-objective approach at the top level would facilitate this

*Limited by the fidelity of the sizing tool used in this study SDSF 2016

- Decision support framework to assist decision-maker or acquisition practitioner to identify the "right requirements" for the new system
- Addressed multi-domain uncertainty and uncertainty propagation
- Approach identified new system requirements that improved (maximized) fleet-level objective

- Alternate approach to address multi-domain problems as Mixed-Integer Non-Linear Programming (MINLP) problem
 - Requires a new MINLP solving approach to address complex tightly coupled systems
 - —AMIEGO (A Mixed Integer Efficient Global Optimization) A MINLP solver to address Aircraft design and Airline allocation as MINLP problem (under development)
- Solving all the sub-spaces as MINLP problem
 - Would enable to integrate other complex systems
 - For example, an integrated Revenue
 Management System will enable to decide the ticket prices under uncertain demand (under development)

- Work has been partially supported by
 - —Acquisition Research Program, Naval Post Graduate School through the grant number N00244-15-1-0063
 - —NASA through grant number NNX14AC73A as a part of the LEARN project: "Scalable Multi-fidelity Design Optimization: Next Generation Aircraft and their Impact on the Air Transportation System"

Thanks to

- Dr. William A. Crossley, Professor (Advisor)
- Dr. Navin Davendralingam, Research Scientist
- Parithi Govindaraju, Graduate Student

School of Aeronautics & Astronautics Purdue University West Lafayette, IN 47907