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Research Overview

• Joint approach to incorporate methods in case studies for assessing impacts of 
requirements changes and scenario variations in MBSE tools, Modeling and Simulation 
(M&S) environments.

• Focus on translations between models/tools in MBSE, specifically mapping architectural 
elements into behavior/performance analysis and cost model inputs.
― SysML, DoDAF, Monterey Phoenix, parametric cost models, M&S environments

• Initial application to UAV Intelligence, Surveillance and Reconnaissance (UAS ISR) 
mission involving heterogeneous teams of autonomous and cooperative agents.  

• AFIT develop mission CONOPS, Architectures and provide modeling support.

• NPS provide cost modeling expertise, tools and modeling support. 

• Approach
― Develop operational and system architectures to capture sets of military scenarios.  

― Develop the architectures in MBSE environments. 

― Design and demonstrate UAS ISR tradespace in MBSE and/or M&S environments . 

― Develop cost model interfaces for components of the architectures in order to evaluate cost effectiveness in 
an uncertain future environment.
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Affordability

• Goal of Total Ownership Cost (TOC) modeling to enable affordability tradeoffs 
with other ilities
― Integrated costing of systems, software, hardware and human factors across full 

lifecycle operations
―Combine with other MBSE architecture-based behavior and performance analysis

• Current shortfalls for ilities tradespace analysis
―Models/tools are incomplete wrt/ TOC phases, activities, disciplines, SoS aspects
―No integration with physical design space analysis tools or system modeling

• Cost estimation can be improved by using the same architectural definitions 
for cost model inputs, without the need for independent cost modeling 
expertise and effort expenditure. 

• Developing translation rules and constructs between MBSE methods, 
performance analysis and cost model inputs.

• Demonstrating tool interoperability and tailorability
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UAS Mission Summaries

• Single UAS Search and Target Tracking (Simple Mission)

• UAS Pair Search and Target Tracking

• Find, Fix and Finish Terrorist Leadership (1)

• Find, Fix and Finish Terrorist Leadership (2)

• Mobile Missile Launcher Monitoring (1)

• Mobile Missile Launcher Monitoring (2)
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Single UAS Simple Mission Threads

• Launch

• Navigation and flight

• Search and target ID including evaluation
― Probabilistic target detection allowing for false targets and missed detections

• Target tracking

• Return/recovery

• Enumeration of these in MBSE models constitutes primary size 
input for Constructive Systems Engineering Cost Model (COSYSMO)
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UAS Mission 
Nominal Cost Comparisons
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Case Study Method

• Use various MBSE methods and tools to evaluate behavior and 
performance analysis in the face of requirements changes and System 
of System (SoS) architectural variations.   

• Develop operational and system architectures to capture sets of UAS 
military scenarios for cooperative swarms with 3 UAS group sizes

• Develop the architectures in MBSE environments. 
―SysML diagrams and executable activity models using Innoslate

• Develop cost model interfaces for components of the architectures in 
order to evaluate cost effectiveness in an uncertain future environment.
―XML model files parsed automatically to extract cost model inputs

• Design and demonstrate UAS ISR tradespace including cost in integrated 
MBSE environment with executable models of architectures
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Implementation of Methodology

CONOPS overview

1.Multi-tier UAS System-of-Systems to
i. Maintain persistent situational awareness over a designated area

ii. Search and locate possible TBM Launchers

iii. Target and strike the located launchers.

iv. Perform BDA?

2.Leverage on capabilities of different groups of UAS and sensor systems.

3.Optimizing UAS employment for mission effectiveness while minimizing
operational cost and risk

4.Cooperative control among various UAS groups to assign roles and plan
safe routes for ingress and egress.

Operational Need
1. Increase in Theater Ballistic Missile (TBM) threats.
2.TBM launchers employing shoot-and-scoot technique, increasing

challenge to counter-TBM operations.
3.Capability to preemptively seek and destroy TBM launchers.
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Implementation of Methodology

Measures of Performance

1.Target Acquisition Pct

2.False Alarm Pct

3.Time-to-Strike

4.Target Destruction Pct
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Implementation of Methodology

High Level DoDAF Architectural Products

1. AV-1 : Overview and Summary Information

2. OV-1 : High-level Operational Concept Graphic

3. OV-2 : Operational Resource Flow Description

4. OV-5a : Operational Activity Decomposition Tree

5. OV-5b : Operational Activity Model

6. OV-6a : Operational Rules Model

7. DIV-2 : Logical Data Model



SSRR 2016 November 17, 2016 13

Implementation of Methodology

OV 1: High-level Operational Concept Graphic
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Implementation of Methodology

OV 5a: Operational Activity Decomposition Tree

Decomposed into 4 levels to provide level of depth
required for effective development of EA.
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Implementation of Methodology

OV 5b: Operational Activity Model

5 Swim-lanes
- ISR UAS
- Surveil UAS
- Strike UAS
- BDA UAS
- Decision Makers
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Implementation of Methodology

OV 6a: Operational Rules Model
Operational Activity Rules

Receive Flight Plan
(ISR)

Activate by Decision Makers through the Assign ISR UAS activity. Signify the activation of the Multi-
tiered UAS SoS,

Assign Surveil UAS Activated by Decision Makers if TBM Located = TRUE.

Receive Flight Plan (Surveil, Strike 
or BDA)

Activated when Assign Surveil/Strike/BDA  UAS = TRUE
The time delay is dependent on Type of C2 and associated distribution.

Ingress into AOR Activated after UAS Receive Flight Plan. The duration required for Ingress into AOR is dependent on 
Type of C2 and associated distribution.

TBM Located?

IF TBM located, activate Locate TBM (ISR) activity which updates Decision Makers, THEN Decision 
makers assign appropriate Surveil UAS through Assign Surveil UAS activity, 
ELSE continue TBM Located? Task UNTIL search is completed.
The probability of TBM located is dependent on the Type of Sensors.

TBM Confirmed?

IF TBM confirmed, activate Confirm TBM confirmation activity which updates Decision Makers, THEN 
Decision makers assigned appropriate Strike UAS through Assign Strike UAS activity, ELSE continue 
TBM Confirmed? Task UNTIL search is completed.
The probability of TBM Confirmation is dependent on the Type of Sensors.

Target Lock-on?
IF TBM lockon, activate Lock-on Target (Strike) activity that updates Decision Makers, THEN Decision 
makers activate Send Strike Confirmation activity and Strike UAS executes Launch Missile (Strike) 
Activity. The Decision makers are updated and activate Assign BDA UAS activity.

TBM Destruction Confirmed?

IF TBM destruction confirmed, the scenario ends, ELSE Decision makers assigned second Strike UAS if 
scenario dictates. 
The probability of TBM Destruction Confirmation is dependent on the probability of destruction of the 
Strike UAS.
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Implementation of Methodology

Design Parameters Variants Effects

Decision-Capability Manual C2 Autonomous C2

1. Speed of decision 
making

2. Quality of decision 
making

Sensor Capability Normal Sensor High End Sensor
1. Target acquisition

2. False Alarm 

Number of Strike UAS 
deployment 1 x Strike UAS 2 x Strike UAS

1. Time-to-strike

2. Target destruction
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Implementation of Methodology

Design 
Parameters Effects Affected Activity Nodes Parameter

Decision-
Capability

Speed of 
decision making

Receive Target Area (Surveil)

Time Delay

Receive Target Coordinates (Strike)

Receive Strike Area (BDA)

Quality of 
decision making

Ingress into AOR (Surveil)

Ingress into AOR (Strike)

Ingress into AOR (BDA)

Sensor 
Capability

1. Target 
acquisition

2. False Alarm 

Locate TBM (ISR) • Probability of 
Positive 
Detection

• Probability of 
False Detection

Confirm TBM Location (Surveil)

Number of 
Strike UAS 
deployment

Target 
destruction TBM Destroyed Probability of 

Destruction
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Implementation of Methodology

UAS on Standby

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

Threat Assessment shows possible TBM deployment within Area of Operations (AO)
During each run, 2 x Targets and 2 x False targets randomly deployed over the 40 grids

Simulation Scenario
• 1 x ISR UAS deployed to conduct ISR [marked by    ]. Follow anti-clockwise search pattern 

over AO.
• When potential target are located, small UAS are deployed to Confirm and track target. 

Simulation limited to 2 x Surveil UAS [marked by    ]. 
• Strike UAS deploy to strike target, once target confirmed [marked by    ]. 
• Small UAS to conduct BDA [marked by    ].

Total of 50 runs carried out per cycle, generating 100 targets and 100 false targets.
Total of 50 cycles executed as part of Monte Carlo simulation for each scenario.

Simulation Scenario

Centralized Manual C2 Autonomous C2 Operations

Normal ISR Sensor
1 x Strike UAS 1 x Strike UAS
2 x Strike UAS 2 x Strike UAS

High End ISR Sensor
1 x Strike UAS 1 x Strike UAS
2 x Strike UAS 2 x Strike UAS

Total of 8 Simulation Scenarios
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MOP 4: Target Destruction Percentage
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MOP 4: Target Destruction Percentage

• Simulation confirmed significant impact in 
difference in Design Parameters:
- Type of Sensors 
- Number of Strike UAS

• Need to maintain High Resolution Sensors to 
meet Threshold value.

• Need to maintain both High Resolution Sensors
and 2 x Strike UAS to meet Objective values
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Summary of Results

MOP Design 
Parameters

Simulation Results Pct Improvement

Target Acquisition 
Percentage

Type of Sensor High: 85.5% 61.5% improvement 
over Normal SensorNormal: 52.9%

False Alarm 
Percentage

Type of Sensor High: 0.4% 95.6% improvement 
over Normal SensorNormal: 9.6%

Time-to-Strike Type of C2 Autonomous: 91.2 
mins

9.8% improvement 
over Manual C2

Manual: 100.1 min

Number of Strike 
UAS

1 x Strike UAS: 
94.6 min

2.1% improvement 
over 2 x Strike UAS

2 x Strike UAS: 
96.9 min

Target Destruction 
Percentage

Type of Sensors High: 75.1% 62.2% improvement 
over Normal SensorNormal: 46.3%

Number of Strike 
UAS

1 x Strike UAS: 
54.8%

21.7% improvement 
over 2 x Strike UAS
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COSYSMO Size Inputs

Size Type Description
Requirements The number of requirements for the system-of-interest at 

a specific level of design.  Requirements may be 
functional, performance, feature, or service-oriented.

Interfaces The number of shared physical and logical boundaries 
between system components or functions (internal 
interfaces) and those external to the system (external 
interfaces).

Algorithms The number of newly defined or significantly altered 
functions that require unique mathematical algorithms to 
be derived in order to achieve the system performance 
requirements.

Operational 
Scenarios 
(Threads)

Operational scenario threads that a system must satisfy, 
including nominal and off-nominal threads.

25
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SySML to COSYSMO Mapping
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TBM 3-Tier UAS Scenarios 
(Use Cases with Threads)

27
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TBM 3-Tier UAS Example 
Requirements

28
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TBM 3-Tier UAS Example 
Interfaces (Ports)

29
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XML Interface Processing

30

…

…

…
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Example COSYSMO Estimate

31
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Ongoing Results

• 2016
― Increasing complexities of Multi-Tier UAS missions

― Baseline case study: TBM 3-Tier UAS SoS

― Alternative approaches to CONOPS modeled – evaluated against MOEs/MOPs

― Demonstrated cost model interfaces for SysML and Monterey Phoenix

• 2015
― Demonstrated architectural tradespace with simpler UAV swarm models for further elaboration in next phase

o Base models of simple UAV scenarios developed with Innoslate and Monterey Phoenix

― Innoslate model used to evaluate behavior and performance of architectural variations

― Initial assessment of Monterey Phoenix (MP) for automatically providing cost information from architectural 
models. 

― Cost models were integrated in different ways with MBSE architectural modeling approaches and as web 
services for tool interoperability. 
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Systems Engineering Cost Model 
Sizing Correlation in MBSE Tools

• Requirements
The number of requirements for the system-of-
interest at a specific level of design. 

• Interfaces
The number of shared physical and logical 
boundaries between system components or 
functions (internal interfaces) and those external 
to the system (external interfaces). 

• Algorithms
The number of newly defined or significantly 
altered functions that require unique 
mathematical algorithms to be derived in order to 
achieve the system performance requirements. 

• Operational Scenarios
Operational scenarios that a system must satisfy, 
including nominal and off-nominal threads.

• These size drivers are further weighted for 
complexity levels.
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Conclusions and Future Work

• We have found a strong correspondence between SysML constructs and system 
size measures of requirements, interfaces, algorithms, and operational scenarios.
― Still comparing approaches for complex algorithm representations in SysML
― Require additional attributes for modeling complexity levels of size drivers

• Continue transcribing all UAS architectural variations into SysML for cost tradeoffs 
to evaluate with other Measures of Effectiveness
― Expanded mission sets to include heterogeneous UAS teams and more complex scenarios

• Apply method and case study with other MBSE tools, evaluate and compare
― More detailed modeling to support thread, requirements, functions, algorithms and 

interface definition

• Develop guidelines with examples for practitioners on modeling decomposition 
levels of detail

• Collaborate with RT-166 providing shared UAS CONOPS and related SysML artifacts
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Completed Student Theses

• Maj. Zhongwang Chua (Singapore AF), “Application of Executable 
Architecture in Early Concept Evaluation using DoDAF”, M.S. 
Thesis, AFIT, September 2016

• Maj. Ryan Pospisal (DTRA/A9, Kirtland AFB), “Application of 
Executable Architectures in Early Concept Evaluation”, M.S. 
Thesis, AFIT, December 2015

• Monica Farah-Stapleton, “Resource Analysis Based On System 
Architecture Behavior”, Ph.D. thesis, NPS, September 2016

• CPT Dennis Edwards (USArmy), “Exploring the integration of 
COSYSMO with a model based system engineering methodology 
in early trade space analytics and decisions”, M.S. thesis, NPS, 
June 2016
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Backups
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Monterey Phoenix Overview

• Monterey Phoenix (MP) is approach to formal software and system 
specification based on behavior models

• A view on the architecture model as a high level description of possible 
behaviors of subsystems and interactions between subsystems

• The emphasis on specifying the interaction between the system and its 
environment

• The behavior composition operations support architecture reuse and 
refinement toward design and implementation models

• Executable architecture models provide for system architecture testing 
and verification with tools

• See http://wiki.nps.edu/display/MP

http://wiki.nps.edu/display/MP
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