

Systems Engineering Experience Accelerator Accelerated Learning & Learning Assessment for Systems Engineering Education

Jon Wade Alex (Peizhu) Zhang

Stevens Institute of Technology

Hypothesis & Goals

Hypothesis: By using technology we can create a simulation that will put the learner in an experiential, emotional state and effectively compress time and greatly accelerate the learning of a systems engineer faster than would occur naturally on the job.

Goals: To build insights and "wisdom" and hone decision making skills by:

- Creating a "safe", but realistic environment for decision making where decisions have programmatic and technical consequences
- Exposing the participants to job-relevant scenarios and problems
- Providing rapid feedback by accelerating time and experiencing the downstream consequences of the decisions made
- Providing tools to facilitate experience development and tailoring

Program Plan 2016-17

Work plan for RT-167	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	De liverable 🔶
Task 1. New Experience Capabilities														
T1.1: Trade study						♦								Trade study demo
T1.2: Reliability KPP & tech debt						⊘ ⊘								REL KPP/technical debt demo
Task 2. Experience Improvements														
T2.1: UAV full life-cycle.									♦					Complete UAS (all phases)
T2.2: Tune simulation														Incremental updates
T2.3: Complete mentor role				♦										Mentor dialogues
T2.4: Update class materials												\diamond		Updated materials
Task 3. Section 508 Compliance														
T3.1: Section 508 methods														Methods/changes for 508
T3.2:Section 508 changes			♦											report
T3.3: Translation of EA screens														All screens and artifacts
T3.4: Translation of EA artifacts										♦				translated
T3.5: Evaluation of 508 compliance												♦		508 conformance certification
Task 4. Validate Research Hypothesis - Learnin	g Eval	uatio	n											
T4.1: Provide support to DAU staff														None
T4.2: Support pilot uses of the EA														None
T4.3: Design learning evaluation; collect data						♦								Evaluation plan
T4.4: Analyze learning effectiveness data													\diamond	Effectiveness report
Task 5. Support DAU EA Deployment	-													
T5.1: Specification of hosting deliverables					\diamond									Deliverable descriptions
T5.2: Hosting solution(s) for DAU								♦		1				Hosting solution report
T5.3: Migrate to 3rd Party Support												\diamond		3rd party support demo
T5.4: Update EA documentation												\diamond		Updated documentation
T5.5: Support of Deployment Plan														None

Introduction

- A widening gap in industry between the need and the availability of systems engineering practitioners with the necessary experience to address these challenges
- Systems engineering educators are struggling to meet the growing educational demands for a workforce able to solve problems driven by accelerating technology, rapidly evolving needs, and increasing systems complexity

Experience Acceleration An Experience Simulator for Systems Engineers and Technical Teams – a safe Environment for Learning A virtual desktop for learning, Utilizing an open No special client architecture and open hardware or source software to build a administrative needs open development community Using open source simulation technology and expert knowledge to safely and effectively build scar tissue in the new technical workforce

The Learning Experience

- An UAV acquisition program
- Learner assumes the role of lead program systems engineer
- Focused on developing the systems thinking, problem solving and recovery skills

UAV System:

- S0 System (UAV)
- S1 Airframe and Propulsion (A&P)
- S2 Command and Control (C&C)
- S3 Ground Support (GS)

UAV KPMs:

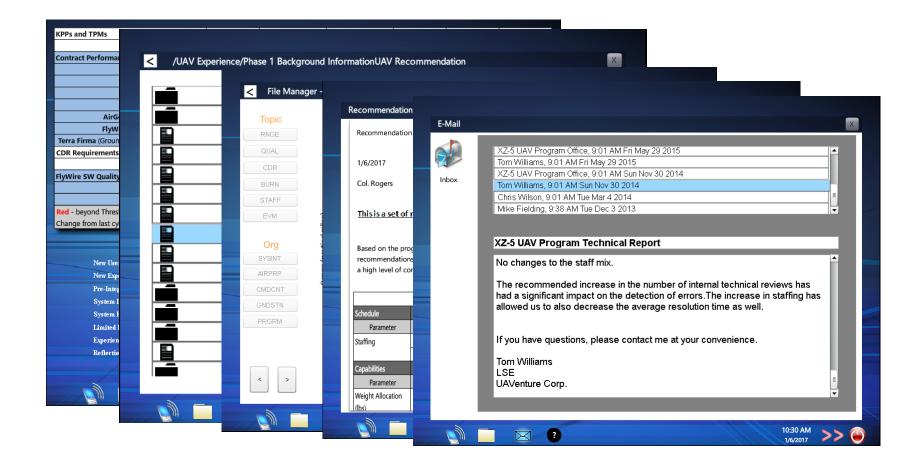
- Schedule
- Quality
- Range
- Cost

Phases:

- EA Introduction
 - Phase 0 (P0): New Employee Orientation
- Experience Introduction
 - Phase 1 (P1): New Assignment Orientation

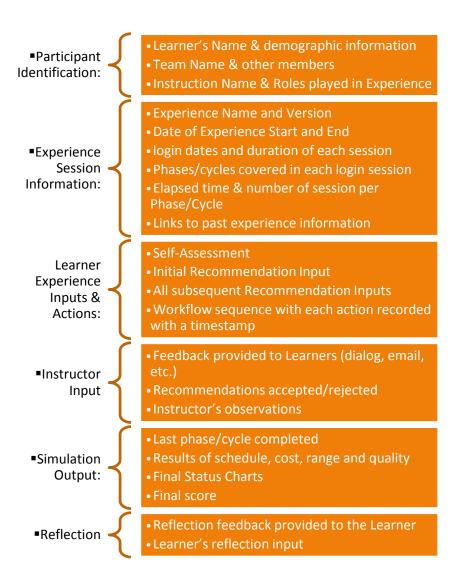
Experience Body

- Phase 2 (P2): Pre-integration system development -> CDR
- Phase 3 (P3): Integration -> FRR
- Phase 4 (P4): System Field Test -> PRR
- Phase 5 (P5): Limited Production and Deployment
- Phase 6 (P6): Experience End
- Experience Conclusion
 Phase 7 (P7): Reflection
- Each session = 1 day



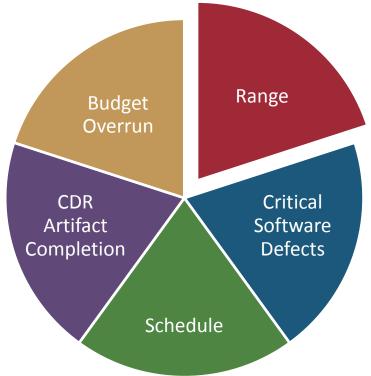
Phases of the XZ-5 UAV Experience

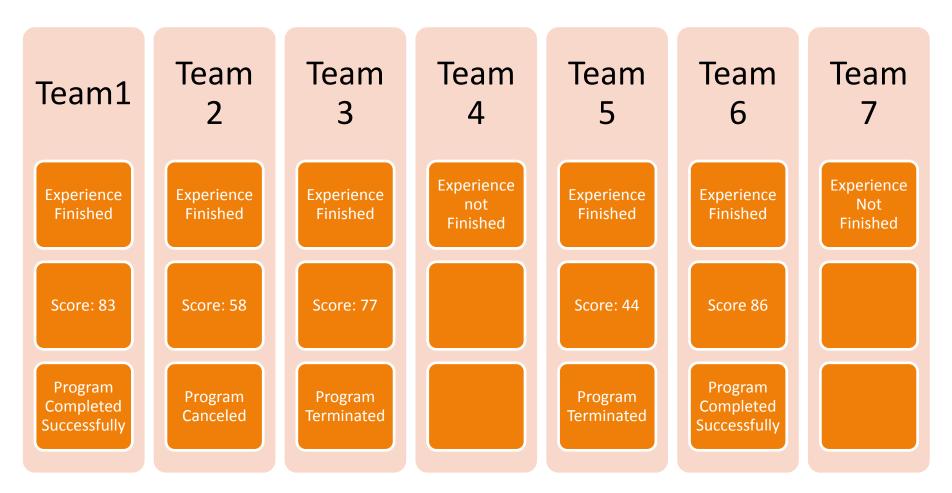
Phase	Phase Description									
	Phase Activity Focus	Ending Event	Activities							
0	SEEA Introduction	Survey completion	The learner is introduced to the SEEA							
1	Assignment to UAV Program	Submission of likely problems and actions	Introduction to the experience							
2	System Pre-integration	Critical Design Review	Acts as LSE							
3	System Integration	Flight Readiness Review	Acts as LSE							
4	Flight Test	Production Readiness Review	Acts as LSE							
5	Limited Production	Integrated System Review	Acts as LSE							
6	End of Project	Success or Failure	Results are presented.							
7	Reflection	End of experience	Receive information about their decisions and reflect on learning objectives.							



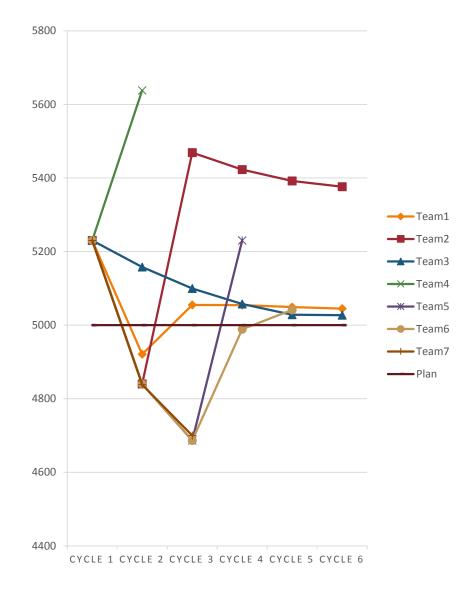
Current Implementation of SEEA

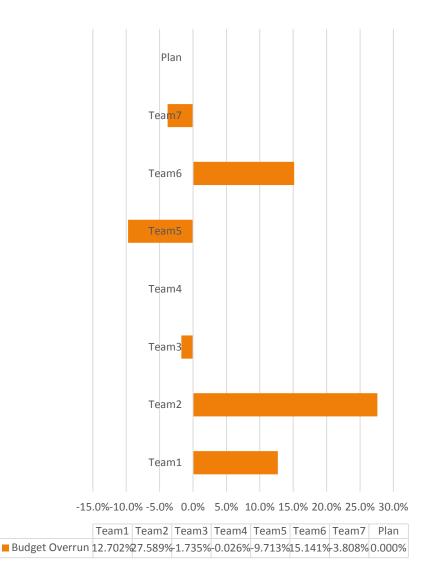
 The EA has been instrumented to record information as a learning laboratory. Research will be done to determine the requisite data that needs to be recorded and the EA will be updated accordingly. Prior to completing this research, these data has been selected and will be collected from the EA:



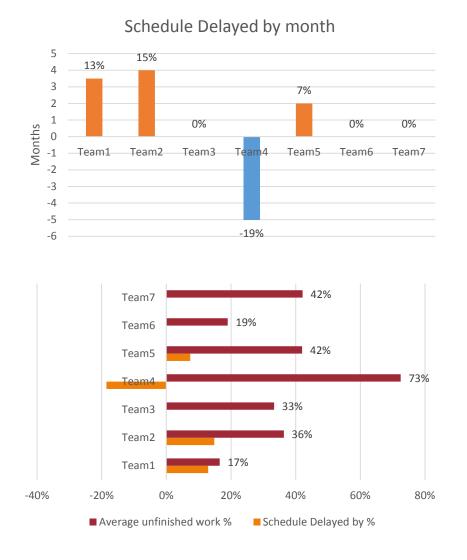

- More than 30 junior and senior engineering undergraduates at the university of Alabama in Huntsville (UAH) used the SEEA during the 2016 spring semester as a team project.
- The students were enrolled in the Management Systems Analysis course, which focuses primarily on project management skills. Students were asked to participate in teams of five.
- Each student in a team plays a different role in the XZ-5 UAV experience. Those roles include Lead Systems Engineer (LSE), Airframe and Propulsion System Lead (APS), Command and Control System Lead (CCS), Ground Stations Launch and Retrieval System Lead (LGLRS), and Integration Lead (Prime).
- Each team was tasked with using the SEEA in the UAV scenario given as two homework assignments – one near the beginning of the semester, and one near the end of the semester to evaluate the students' skill advancement.

- Pilot Results
 - -Performance data of the teams gathered and compared.
 - Performance measures include range, critical software defects, schedule, CDR artifact completion and budget overrun.
 - -Teams made different decisions resulting in a range of performances and different program results.
 - -Five of the seven teams completed the project cycle and reached phase 7 to receive performance feedbacks for the EA.

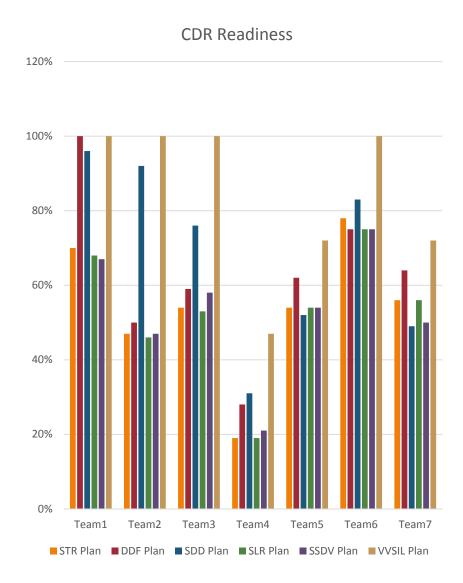



Range Performance

- Range of the UAV is affected by weight, drag coefficient and thrust specific fuel consumption (TSFC).
- There were early signs of a range problem caused by weight issues.
- Team 2 performed very well with range, team 1, 5, 6 achieved the requirement.
- Most of the teams reacted to the weight issues by reallocating the weight balance and adding more workforce to the airframe and propulsion team.


Budget Overrun

- Budget is an important measure to the success of the UAV program. Teams need to control the budget to be successful in the experience.
- Team 2 performed well in range, the recommendations they made caused significant budget overrun.
- All the successful teams managed the budget and had a budget overrun of less than 15 percent.


Schedule & CDR Readiness

- The XZ-5 UAV program has an original plan of 27 months between PDR and CDR. Any significant delay will potentially undermine the success of the program.
- It is recommended by the experts that the schedule shall not be delayed over 20 while the delay within 10% of the period is considered good.
- Team 3, 5, 6 and 7 managed the schedule well. Team 4 recommended to advance the CDR time by 5 months which resulted in incomplete work.
 Team 1 and 2 performed within acceptable range.
- Teams that manages the schedule well are likely to pass CDR proceed with low risk.

CDR Artifacts Completion

- The CDR Readiness is affected by the staff mix, as well as the number of design and test plan reviews.
- Includes STR, DDF, SDD, SLR, SSDV and VVSIL plans.
- Team 1 and 6 did very well. While Team 2, 3 and 5 did ok.

Software Critical Defects

- Software critical defects are affected by the mix of senior junior staff and the number of software reviews.
- It is recommended to have less than eight critical defects to pass CDR proceed with low risk.
- Team 1, 5, 6 and 7 kept the critical defects quite low, while Team 2 and Team 3 kept them within an acceptable range.

Pilot Analysis

T									
Teams	Simulation Result & Score	Presentation Results	Decision and Actions throughout the Experience						
Team 1	Finished the experience,	Decisions that would be changed in hindsight:	Increased the CCS weight allocation.						
	entered CDR with low risks. Program completed	Command and Control weight would have been decreased more	Increased senior staff and decreased junior staff.						
	successfully.	significantly	Increased the drag coefficient target						
	Score 83	More junior staff would have been hired and less senior staff to avoid costs							
		Overall, the project was overrun by 13% at the end of Phase 2, so more questions would have been asked to stakeholders to make better decisions							
Team 2	Finished the experience, entered CDR with high	N/A	Increased the CCS weight allocation, and hired more junior staff.						
	risks. Program canceled.		More junior staff and increased the drag coefficient target significantly.						
	Score 58		Decreased CCS weight allocation and hired even more junior staff.						
_			Changed senior/junior staff mix.						
Team 3	Finished the experience, entered CDR with medium	Entry criteria for CDR was not achieved due to personnel disbursement error. After hiring and training new personnel, it was decided to move	Decreased CCS weight allocation and increased both senior and junior staff.						
	risks. Program terminated.	forward in the hopes of achieving at least 80% effectiveness.	Decreased CCS weight allocation. Further increased senior and junior staff. Increased drag coefficient target.						
	Score 77	In hindsight, the team would ensure the correct amount of personnel per department is hired and trained efficiently and effectively to meet guidelines	Further increase senior and junior staff.						
		and quality metrics for the success of the program							
Team 4	Didn't finish the	Most likely would not have been ready for the CDR because of the issues	Increased senior staff in APS and CCS, change weight allocations.						
	experience.	with scheduling and project progress, but there seems to be improvement compared to our previous run.	Added more senior staff and less junior staff.						
	Score N/A	We were more willing to make changes this time, which seemed to improve							
		the project overall.							
Team 5	Finished the experience.	Our CDR was delayed by 2 months because the range wasn't where we	Increased senior and junior staff.						
	Entered CDR with medium	wanted it to be.	More senior staff and less junior staff. Increase drag coefficient target.						
	risks. Program terminated.	After delay, CDR criteria was achieved and we proceeded to the next	Increased senior and junior staff.						
	Score 44	phase.							
Team 6	Finished the experience.	CDR completed and mission accomplished. Adding quality engineers was very successful in our simulation.	Increased senior and junior staff.						
	Entered CDR with low		Decrease senior staff slightly.						
	risks. Program completed		Increase weight allocation for CCS. Increased target of drag coefficient.						
	successfully.		Reduced junior staff number.						
Team 7	Score 86 Didn't finish the	Would do differently:	Reduced junior star number. Reduced the total weight allocation of APS, increased both senior and junior staff						
	experience.	Add more staff to APS at the beginning to reduce the drag.	for CCS, increased the GS junior staff, increased APS.						
	Score N/A	Not hire as much staff for the CCS.	Added more senior and junior staff. Increased software review frequency.						
		Try to find different ways to reduce the drag coefficient.							
		Try to find different ways to increase the range.							

Summary

- Discussed the use of Systems Engineering Experience Accelerator in the domain of Systems Engineering Education, its use for SE education and learning assessment.
- During the pilot application of the technology, data was gathered from seven teams of students who participated the XZ-5 UAV learning experience.
- The technical difficulties encountered in the first run of this pilot have been resolved and for future pilot applications will conduct multiple runs of the SEEA.

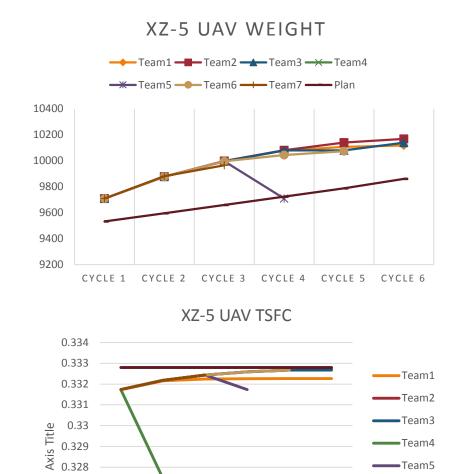
Future Works

- More pilot applications with multiple runs and data gathering.
- Compare students' behavior data and decision-making process with experts'.
- Continue the development of the Learning Assessment Tools.
- New presentation engine.

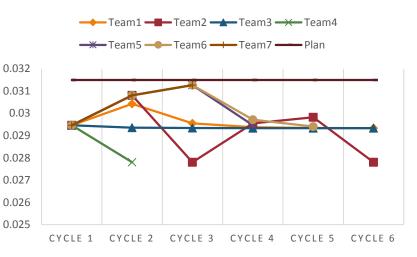
• This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology. The support and guidance by the Defense Acquisition University, Dave Pearson, John Snoderly and Scott Lucero was critical to this program. The authors thank all members of the Experience Accelerator team, as well as the subject matter experts who have provided guidance for authenticity of the Experience Accelerator. The authors particularly wish to thank the students within the University of Alabama Huntsville course.

Thanks

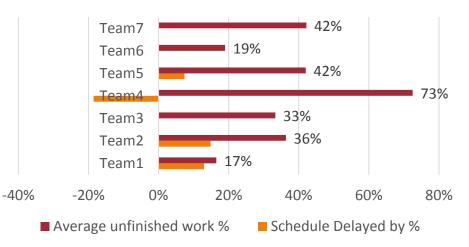
Questions?


0.327

0.326


0.325

0.324


Other data gathered

XZ-5 UAV DRAG COEFFICENT

XZ-5 UAV Schedule

Team4

Team5

Team6

Team7

23

Plan

CDR Status Evaluation

Simulator Status @ C	DR		PTs		Values	CDR Concern Points		PTs		Artifact Concern Points
Range	5376	КРР					Documentation			
SW Qual (Crit. Defects)	8	Range		5376			System Test Regts		47%	
Actual Budget (\$M)	248	Range Plan		5000			STR Plan		100%	
Actual Schedule (Months)	31	Green %		95%	4750		Green % complete		95%	
CDR Artifact Completion		Yellow %	1	85%	4250		Yellow % complete	1	80%	
System Test Reqts	47%	Red %	3	<85%			Red <% complete	2	<80%	2
Digital Design Files	50%									
Software Design Desc.	92%						Digital Design Files		50%	
Structural Loads Released	46%	SW Quality					DDF Plan		100%	
Sub-System Design/Ver	47%	Defects Remaining		8			Green % complete		95%	
V&V of System Integ. Lab	100%	Green Max		8			Yellow % complete	2	80%	
Overall Concern Points	7	Yellow Max	1	12			Red % complete	4	<80%	4
		Red Min	2	>12						
Risk of Proceeding Based							Software Design Desc.		92%	
on CDR Results	High!						SDD Plan		95%	
	ingit:	Overall Artifact Status		11			Green % complete		95%	
		Green Max ACPs		4			Yellow % complete	1	95% 80%	4
		Yellow Max ACPs	2	6			Red % complete	2	<80%	1
		Red Min ACPs	4	>7		4	Red 70 Complete	2	<0070	
CDR Status Determination	7	Neu Will ACFS	4	21			Structural Loads Released		46%	
Max Concern Points for Low	3	Budget					SLR Plan		100%	
Max Concern Points for Medium	4	Actual		248			Green % complete		95%	
wax concern Points for Medium	4	Plan		195			Yellow % complete	1	80%	
		Green <=% over		15%	224.25		Red % complete	2	<80%	2
		Yellow <= % over	1	20%	224.23		neu // complete	~	10070	2
		Red > % over	2	>20%	234	2	Sub-System Design/Ver		47%	
		neu × /o Over	~	~2070		-	Sub-System Design/ Ver SSDV Plan		100%	
		Schedule					Green % complete		90%	
		Actual		31			Yellow % complete	1	90%	
		Plan		27			Red % complete	2	<80%	2
		Green <=% over		10%	29.7		neu v compiete	~		~
		Yellow <= % over	1	20%	32.4		V&V of System Integ. Lab		100%	
		Red > % over	2	>20%		_	VVSIL Plan		100%	
			-	- 2070			Green % complete		95%	
							Yellow % complete	1	90%	
							Red % complete	2	<90%	
							incure complete	-	-2070	
							Total Artifact Concern Pts			11

EA Experience Score

Area Score	5	Weight	Base	loss per % work not complete	loss per month of delay
Schedule	100	25%	100	2.5	15
		Weight	Base	Loss per % of range shortfall	
Range	100	25%	100	5	
		Weight	Base	Loss per critical defect	
Quality	92	25%	100	2	
		Weight	Base	Loss per \$1M overun	
Cost	52	25%	100	2	

- Calculated based on schedule, range, quality and cost. Raw score scaled based on the no nothing scenario and the best possible scenario.
- Final score calibrated to be between 0-100.