

Investigating Approaches to Achieve Modularity Benefits in the Acquisition Ecosystem

Sponsor: DASD(SE)

By

Dr. Daniel DeLaurentis Dr. Navindran Davendralingam 8th Annual SERC Sponsor Research Review November 17, 2016 20 F Street NW Conference Center 20 F Street, NW Washington, DC

www.sercuarc.org

- Current DoD acquisition challenges
 - -to affordably address emerging threats
 - -component obsolescence
 - loss of critical suppliers, and planned technology upgrade for tightly coupled, highly integrated systems
- DoD acquisitions strategy : Better Buying Power 3.0 (BBP 3.0)
 - Implement best practices to improve productivity, affordability, capabilities, reduce unproductive states across DoD acquisitions
 - Includes encouraged use of modularization strategies to achieve desired end benefits
 - Strategy: Modular Open Systems Approach (MOSA)

- ODASD/SE Modular Systems Approach (MOSA)
 - Open System Architecture (OSA)
 - Business side of acquisition process data rights, IP, legal matters
 - Most MOSA work currently under auspices of OSA efforts need to extend to technical as well
 - Requirement under law on including MOSA in acquisition language
 - -Modularity (in DoD)
 - Viewed as technical approach in defense acquisitions
 - Complex system decomposition: physical and functional architecture
 - Largely separated from OSA tenets that are more business oriented
 - Modular open systems leverages business driven benefits of adopting Open Architecture standards for development

MOSA Goals

Cost savings/cost avoidance

-Savings via reduced burden on acquisition processes,

Allow technology refresh

 Rapid updates of modules individually easier than addressing total monolithic complex system

Interoperability of systems/components

-Open standards use ensures compliance in interoperability

• Increase competition between suppliers

 Leverage open standards and modularity to engage more business units for development (e.g. SBIRs etc)

Incorporate innovation

Innovation can be more readily focused at localized modular level

MOSA Guidelines

Establish an enabling environment

 PM to generate business practices, technology development, test and evaluate, etc. needed for development of open systems

Employ modular design

 Four main characteristics: cohesive, encapsulated, self-contained, highly binned

Designate Key Interfaces

Module interfaces defined to enable designers and configuration managers

• Use Open Standards

 Utilization of community accepted standards that are well defined/matured

Certify Conformance

 Use rigorous assessment mechanisms, interface control management and proactive conformance testing.

** http://www.acqnotes.com/acqnote/careerfields/modular-open-systems-approach

How to bring business and technical elements together in an ecosystem?

- Investigate development of systems to exploit modularity to enhance defense acquisitions and military capabilities.
- Explore concept of an ecosystem that facilitates adoption of modular solutions to achieve benefits (business + technical ends)
- Investigate how to encourage modularity to gain its benefits – conducive modular patterns, decompositions, methods, factors, catalysts etc.
- Provide guidance and insights to aids program managers in decision-making on modularization and achieving the intended benefits
- Work under RT-163 currently ongoing

RT-163 Research Approach

Modularity – An Intuitive Perspective

- **Definition:** A general set of principles that help with managing complexity through breaking up a complex system into discrete pieces, which can then communicate with one another through standardized interfaces [Langlois, 2002]
- Types of modularity [Baldwin 2006]
 - -Modularity in Design
 - Product divided into modules independently with minimal interactions
 - -Modularity in Production
 - $\circ\,$ Mass production driven that promotes flexibility and parallelism
 - Efficient innovations in production phases (e.g. vehicle production)
 - -Modularity in Operations
 - Shared components for increased operational flexibility
 - Interchangeable components for different missions

Systems in Aerospace

Modularity

Benefits of Modularity

- Managing complex systems by breaking down into smaller pieces
- Facilitates rapid evolution through changes at module level
- Enables parallelisms (operations, development)
- Accommodate future uncertainties

Potential Drawbacks

- -Duplicated subsystems at local levels
- -Limited innovation due to compartmentalization
- -Many choices of measure for modularity
- Unseen impacts on complex system due to changes at module level

 Honda work on information passing → impacts end design

From McCormak et al., "Exploring the Duality between Product and Organizational Architectures: a Test of the Mirroring Hypothesis", 2012

SSRR 2016

Sub 3

Sub 2

Sub 1

- Daimler designs closely knit and carefully designed integrated components
- Chrysler design focus on modular designs
 - Autonomous suppliers design, supply and innovate based on standards
- Merger of Daimler-Chrysler was overall deemed detrimental
 - -Mixing JIT supply chain with Daimler supply chain proved challenging and costly

Case: Modularity Measures

- How to choose a measure (metric) for modularity? How is one system more modular than another? Openness?
- TARDEC choice of vertical vs. horizontal modularity metric observed to drive effectiveness of approach
- Openness Navy Open Architecture Assessment Tool (OAAT) to measure level of openness

Dasch, J., Gorisch, D., "Survey of Modular Military Vehicles: Benefits and Burdens", Defense Acquisition Research Journal, January 2016, Vol 24 No1.:2-27

November 17, 2016

- Dr. Gary Witus great insights on "Intersection of MOSA and Set-Based design"
- Highlights challenges and workflow considerations in MOSA strategies
- Includes TARDEC

ATD case study

What Lives at the Intersection of MOSA and Set-Based Design?

Gary Witus, Wayne State University

October 19 | 1:00 pm ET

- Today's session will be recorded.
- An archive of today's talk will be available at: www.SERCuarc.org
- Use the Q &A box to queue questions and comments and they will be answered during the last 10 minutes of the session.
- If you are connected via the dial-in information only, please email questions or comments to Dr. Mitchell Kerman at <u>mkerman@stevens.edu</u>.
- Any issues? Use the chat feature for any technical difficulties or other comments or email Ms. Mimi Marcus at mmarcus@stevens.edu.

Need Ecosystem concept...to avoid temptation think of modularization as more of a physical/functional decomposition with implicit business element (openness)

Daimler-Chrysler Case Study

-Operational Compatibility

McCormack Study & Conway's Law

-Organizational Compatibility

TARDEC Case study

Choice of metric for modularization

Need holistic view on MOTIVATION and IMPACT of strategies

Esticore

- MOSA workshop held in Washington DC [Government, Academia, Industry attendees]
 - 31 attendees [13 Gov, 6 Industry, 12 Academia]
- Purpose to focus on exploring key question/have in depth discussions on:
 - -Defining, quantifying and assessing modularity
 - —Generating candidate strategies, cognizant of current barriers
 - -Synthesizing key list of stakeholder needs/concerns in MOSA ecosystem
 - —Mapping beneficial elements of modularization strategies to appropriate acquisition processes
- —Generate **repository** of useful case studies/anecdotes

- Modularity should not be seen as an "output" but as means to achieve end benefits
- Need "feedback measures" to inform choices
- Care for multiple stakeholders and their needs
- To show "compliance", evaluate the degree to which programs show that their approaches are good in terms of the of the estimated benefits
- "good modularity" is same as "good architecting" can be hard for complex systems development
- Encourage greater intentionality in adequate amount and style of modularity

- Establish the long-term business strategy, drivers and objectives for each stakeholder, and their time horizons for MOSA-generated benefits
 - Keep into account competing interests
- Provide tools to categorize and assess consequences of modularization choices, under uncertainty
 - Holistic level tools (e.g. **MBSE**) to capture main viewpoints
 - Measure the consequences of available data, for example on the 5 benefits
- **Provide feedback mechanisms**, to help stakeholders understand the consequence of their actions and that of others
- **Develop a database of case studies,** based on best practices, tacit knowledge, anecdotes, that is well mapped to the acquisition process
- Map case studies to appropriate parts of the overall acquisition lifecycle, in order to develop "principles" and guidelines with case studies tagged

Thank you

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract HQ0034-13-D-0004-0063. SERC is a federally funded University Affiliated Research Center managed by Stevens Institute of Technology.